跳到主要內容

簡易檢索 / 詳目顯示

研究生: 薛景壕
Ching-hao Hsueh
論文名稱: 人工岩體受剪變形之音波特性
The properties of sound wave during shear deformation of artificial rock
指導教授: 張惠文
Huei-wen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 129
中文關鍵詞: 人工岩體岩石摩擦岩石破裂音波加速度
外文關鍵詞: sound pressure, acceleration, crack of rock, friction of rock, artificial rock
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以氣動式直剪試驗儀進行人工岩體之摩擦試驗與剪力強度試驗,以模擬岩石層面摩擦與破裂之行為,接著利用電容式微音器及加速度計量測試驗過程中產生之波傳訊號,探討音波、振波與位移間之相互關係。試驗方法以應力控制方式分階施加水平應力,進行一系列固定正向應力之摩擦與剪力強度試驗。本研究之波傳訊號以最大音壓及最大加速度描述某時間區段內訊號強弱,由摩擦試驗結果顯示於人工岩體發生破壞前,若可測得較背景音波訊號為大之音壓,則表示層面間之應力已達到降伏摩擦應力,若摩擦應力持續增加則會發生瞬間滑動破壞,並產生大幅音壓。剪力強度試驗結果顯示於人工岩體發生破壞前,可測得裂隙產生時所發出之音壓,然於試驗中未觀察到顯著之降伏應力及音壓,當人工岩體受剪破壞時才產生巨幅音壓。岩石層面通常存在許多已開裂層面和局部開裂岩體,當局部開裂岩體受剪破裂時,可能尚不致產生大量位移;然已開裂層面受剪時所承受之剪力為層面間之摩擦阻抗,破壞時將產生瞬間之顯著滑動。因此本研究提出一岩層破壞預警模式,當測得巨幅音壓時,即表示此岩層層面之部分岩體開始因受剪而產生破裂,須將該區域視為警戒範圍,應密集觀測滑動破壞所產生之音波訊號,一旦發現音壓有小幅驟升現象發生,即代表獲知岩層或邊坡即將發生滑動破壞之訊息,此時立刻對此岩層或邊坡發出警訊,將可以降低或預防災害的產生。


    This research used artificial rock specimens to perform a series of friction tests and shear tests by stress controlled direct shear apparatus, to simulate friction and crack behaviors of rocks. In the testing processes, the data of sound waves and vibration waves was measured, and the relationships among sound waves, vibration waves and shear displacement were discussed. To avoid the disturbances of vibration and noise of the shearing machine, an air cylinder was used to apply the shearing or frictional forces in several small steps until the failure of specimens occur. The signals of wave propagation in a time period were expressed as maximum sound pressure and maximum acceleration.
    According to the results of the friction tests, some apparent signals of sound pressure and acceleration would be measured before the frictional failure. This means that the frictional stress between these two artificial rocks has reached the yielding value. If the frictional stress increases continuously, the sliding failure may occur and cause some large sound pressure and acceleration simultaneously. On the other hand, although some apparent signals of sound pressure and acceleration can be detected from the shearing tests, but the yielding stress still can not be found and the failure occurred instantly during the shear stress reached the peak value.
    Therefore, in the application of early warning of rock slope, it is understood that there may exist some apparent cracks or faults in rock ground, and both of the partial cracking or sliding rock may cause some apparent signals of sound and vibration. The combination of these information obtained from this research may support an early warning system of rock slope to decrease the damage of disaster.

    摘要 I Abstract II 目錄 III 照片目錄 VI 表目錄 VII 圖目錄 VIII 符號說明 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 1 1.3 論文內容 2 第二章 文獻回顧 3 2.1 音波與振波特性 3 2.1.1 音波基本原理 3 2.1.2 空氣中音波衰減特性 3 2.1.3 土層中振波衰減特性 4 2.1.4 音射現象 6 2.2 音波訊號分析 7 2.2.1 音波基本參數 7 2.2.3 時間域分析 9 2.2.4 頻率域分析 9 2.2.5 振幅與振幅分布 10 2.3 音波之應用 10 2.3.1 土壤中音波之研究 10 2.3.2 不穩定邊坡之音波量測 11 2.3.3 岩石中音波之研究 12 2.3.4 岩石邊坡之音波量測 13 2.3.5 混凝土塊受壓時之音波反應 14 2.3.6 土石流地聲特性之研究 15 2.3.7 乾燥砂土中音波及振波之傳遞特性 16 2.3.8 岩石摩擦之音波量測與應用 16 第三章 試體製作、試驗設備與試驗方法 32 3.1 試體製作 32 3.1.1 摩擦試驗之試體製作 32 3.1.2 剪力強度試驗之試體製作 32 3.2 試體材料之基本物理性質及單軸壓縮強度 33 3.3 試驗儀器與相關設備 34 3.3.1 波傳量測系統 35 3.3.2 改良式直接剪力試驗儀 38 3.3.3 量測系統設備 39 3.3.5 單軸壓縮試驗儀 41 3.4 試驗方法及步驟 41 3.4.1 人工岩體摩擦試驗 42 3.4.2 人工岩體剪力強度試驗 42 3.4.2 應變控制式與應力控制式之試驗步驟與儀器配置 43 第四章 試驗結果與分析 64 4.1 波傳訊號之濾波處理 64 4.2 摩擦試驗 64 4.2.1 摩擦應力與正向應力之關係 64 4.2.2 正向應力對摩擦應力與水平位移之影響 65 4.2.3 摩擦應力與水平位移之關係 66 4.2.4 最大音壓與最大加速度訊號之擷取 66 4.2.5 音波訊號、摩擦應力與水平位移之關係 67 4.2.6 人工岩體強度對音波與摩擦應力之影響 68 4.2.7 音波訊號與加速度訊號之比較 69 4.3 剪力強度試驗 69 4.3.1 剪應力與正向應力之關係 69 4.3.2 正向應力對剪應力與水平位移之影響 70 4.3.3 剪應力與水平位移之關係 70 4.3.4 最大音壓與最大加速度訊號之擷取 71 4.3.5 音波訊號、剪應力與位移之關係 71 4.3.6 音波訊號與加速度訊號之比較 72 4.4 摩擦試驗與剪力強度試驗之比較 72 第五章 結論與建議 104 5.1 結論 104 5.2 建議 106 參考文獻 107

    1. 古秉弘,「砂土中音波傳遞與量測之研究」,碩士論文,國立中央大學土木工程學系,中壢(2005)。
    2. 吳志鴻,「淺層砂土中音波傳遞特性之研究」,碩士論文,國立中央大學土木系,中壢(2006)。
    3. 吳銘德、周丹「探測岩石破裂的聲音以確定人工裂縫的方法」,國外測井技術,第八卷,第六期,第 19-22頁 (1993)。
    4. 林盈宏,「飽和砂土中圓錐貫入引發之音射特性」,碩士論文,國立中央大學土木系,中壢(2003)。
    5. 林秀樺,「岩石摩擦之音波量測與應用」,碩士論文,國立中央大學土木系,中壢(2009)。
    6. 施國欽,岩石力學-大地工程學(四),文笙書局,台北(2004)。
    7. 徐萬樁,噪音與振動控制,協志工業叢書,台北(1975)。
    8. 黃清哲、葉智惠、尹孝元、王晉倫,「地聲探測器應用於土石流監測之實驗」,中華水土保持學報,第三十六卷,第一期,第39-53頁 (2005)。
    9. 黃清哲、孫坤池、陳潮億、尹孝元,「不同型態土石流地聲特性之實驗研究」,中華水土保持學報,第三十八卷,第四期,第417-430頁 (2007)。
    10. 張哲胤,「乾燥砂土中音波及振波之傳遞特性」,碩士論文,國立中央大學土木工程學系,中壢(2007)。
    11. 梁能,「圓錐貫入試驗中土壤微震音之量測」,碩士論文,國立中央大學土木系,中壢(1998)。
    12. 葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國立中央大學土木系,中壢(2004)。
    13. 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技圖書股份有限公司,台北(2005)。
    14. 蔡雅惠,「基樁承受側向荷載後之表面摩擦特性」,碩士論文,國立中央大學土木系,中壢(2004)。
    15. 鄭玉旭、王偉哲、陳博亮,「應用主動波偵測法於土石流發生前之預測之初步研究」,聯合學報,第24期,第125-135頁(2004)。
    16. 蕭年宏,「砂土受剪時音波與振波之傳遞探討」,碩士論文,國立中央大學土木系,中壢(2008)。
    17. 蘇德勝,噪音原理及控制,臺隆書店,台北(2003)。
    18. Beard, F.D., “Predicting Slides in Cut Slopes,” Western Construction, pp. 72 (1961).
    19. Bieniawski, Z.T., “Mechanism of brittle fracture of rock,” Int.J, Rock Mech, Min, Sci, Vol.4, No.4, pp.407-423 (1967).
    20. Bieniawski, Z.T., Franklin, J.A, Bernede, M.J., Duffaut, P., Rummel, F., Horibe, T., Broch, E., Rodrugues, E., Van Heerden, W.L., Vogler, U.W, Hansagi, I., Szlavin, J., Brady, B.T., Deere, D.U., Hawkes, I, and Milovanovic, D., “Suggested method for determining the uniaxial compressive strength and deformability of rock materials,” International society for rock mechanics, Vol.16, No.2, pp.135-140 (1979).
    21. Brady, B.H.G., and Brown, E.T., “Rock Mechanics for Underground Mining,” Chapman & Hall, London, pp.87-137 (1993).
    22. Blot, B.A, Earthquakes: A Primer, Freeman, San Francisco, pp.241 (1978).
    23. Dixon, N., Hill, R., and Kavanagh, J., “Acoustic emission monitoring of slope instability:Development of an active waveguide system,” Geotechnical Engineering, Vol. 156, No.2, pp. 83-95 (2003).
    24. Dixon, N., and Spriggs, M., “Quantification of slope displacement rates using acoustic emission monitoring,” Canadian Geotechnical Journal, Vol. 44, pp.966-97 6(2007).
    25. Ewing, W.M., and Jardetzky, W.S., Elastic Waves in Layered Media, McGraw-Hill Book Co., New York, pp. 380-381 (1957).
    26. Frankin, J.A., and Kanji, M.A., ets., “Suggested methods for determining shear strength,” International Society for Rock Mechanics, No.1 (1974).
    27. Goodman, R.E., Blake, W., “Rock noise in landslides and slope failures,” Highway Res Rec, Vol.119, pp.50-60 (1966).
    28. Gutowski, T.G. and Dym, C.L., “Propagation of Ground Vibration: A Review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
    29. Hardy, H.R. Jr.,”Application of acoustic emission techniques to rock and rock structures:a state of the art review,”Acoustic Emission in Geotechnical Engineering Practice, ASTM STP750, pp.4-92(1981).
    30. Hough, S.E., Earthshaking science: what we know (and don''t know) about earthquakes, Princeton University Press, U.S.A., pp. 43-46 (2002).
    31. Jemielniak,K., “Some aspects of acoustic emission signal pre-processing,"Journal of Materials Processing Technology, Vol.109, pp.242-247(2000).
    32. Kanagawa, T., Hayashi, M., and Nakasa, H., “Estimation of spatial GEO-stress components in rock samples using the Kaiser effect of acoustic emission,” CRIEPI Report, Tokyo, Japan, pp.1-22 (1976).
    33. Kaiser, J., “Analysis of the appearing acoustic during tensile test,” Technische Hochschule, Munich,(1953).
    34. Kano, Y., Mori, J., Fujio, R., Ito, H., Yanagidani, T., Nakao, S., and Ma, K. F., “Heat signature on the Chelungpu fault associated with the 1999 Chi-Chi, Taiwan earthquake,” Geophysical Research Letters, Vol. 33, L14306 (2006).
    35. Koerner, R.M., ASCE. M., and Lord, A.E.,“Acoustic emissions in medium plasticity clayey silt,”Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.98, No.SM1(1972).
    36. Koerner, R.M., Lord, A.E., McCabe, W.M., and Curran, J.W., “Acoustic emission behavior of granular soils.” Journal of the Geotechnical Engineering Division, ASCE, Vol.122, No.GT7, pp.761-773(1976).
    37. Koerner, R.M., McCabe, W.M., and Lord, A.E.,“Acoustic emission behavior and monitoring of soils,”Acoustic Emissions in Geotechnical Engineering Practices, ASTM STP 750, pp.93-141(1981).
    38. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, N.J. (1996).
    39. Mogi, K., “Magnitude frequency relation of microfracturing in rock and its relation to earthquakes,” Bull Earthquake Res Inst, Vol.40, pp.831-853 (1964).
    40. Ranjith, P.G., Fourar, M., Pong, S.F., Chian, W., and Haque, A., “Characterisation of fractured rocks under uniaxial loading states,” Int.J, Rock Mech, Min, Sci, Vol.41, pp.361-366 (2004).
    41. Ranjith, P.G., Jasinge, D., Song, J.Y., and Choi S.K., “A study of the effect of displacement rate and moisture content on the mechanical properties of concrete:Use of acoustic emission,” Mechanics of Materials, Vol.40, pp.453-569(2008).
    42. Richart, F.E., Woods, R.D., and Hall, J.R., Vibrations of Soils and Foundations, Prentice-Hall, Englewood Cliffs, N.J. (1970).
    43. Ronnie, K.M., and Paul, McIntire., “Acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
    44. Scott, I.G., “Basic acoustic emission,” Nondestructive Testing Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers (1991).
    45. Shiotani, T., Fujii, K., Aoki, T.,and Amou, K., “Evaluation of progressive failure using AE sources and improved b-value on slope model tests,” Prog Acoust Emiss VII, JSNDI, Vol.7, pp.529-534 (1994).
    46. Shiotani, T., “Detection and evaluation of AE waves due to rock deformation,” Construction and Building Materials, Vol.15, pp.235-246 (2001).
    47. Shiotani, T., “Evaluation of long-term stability for rock slope by means of acoustic emission technique,” NDT & E International, Vol. 39, No. 3, pp. 217-228 (2006).
    48. Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A., “Foundationals of acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5, pp. 11-44 (1987).
    49. Tanimoto, K., Takahashi, S., Kaneko, T., and Shiota, K., “Impulsive breaking wave forces on an inclined pile exerted by random waves.” Proceedings of the Coastal Engineering Conference, Vol.3, pp. 2282-2302 (1987).
    50. Yabe, Y., Kato, N., Yamamoto, K., and Hirasawa, T., “Effect of Sliding Rate on the Activity of Acoustic Emission During Stable Sliding,"Pure and Applied Geophysics, Vol.160, pp.1163-1189(2003).

    QR CODE
    :::