跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林明德
Ming-Te Lin
論文名稱: 白光發光二極體之環形螢光粉光學結構研究
Study of Ring Remote Phosphor for White LED Optical structure.
指導教授: 孫慶成
Ching - Cherng Sun
陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 131
中文關鍵詞: 環形螢光粉遠距螢光粉螢光粉轉換效率螢光粉白光發光二極體
外文關鍵詞: White LED, White light emitting diode, phosphor, RRP LED, Remote Phosphor, phosphor-converted efficiency
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以LED螢光粉層的光學結構為重點,以初階的光學模擬搭配實驗驗證,探討穿透式與反射式螢光粉結構,在LED封裝光學結構的效率變化。在穿透式螢光粉架構提出環形螢光粉白光LED架構,由一倒錐透鏡與透鏡側面圍繞呈環形的螢光粉層結構組成,我們優化倒錐半角相對臨界條件,降低螢光粉反射回之光線被晶粒吸收的機率,獲得螢光粉封裝萃取效率達94%。並找到克服大晶粒中信漏藍光之臨界條件。因中間全反射面上方(螢光粉反射),與螢光粉側面(螢光粉穿透)之出光機制不同,其B/Y很難一致,加上全反射面光滑度的影響,故有空間分布色溫差異大之缺點。因此進一步提出改善架構,反射環形螢光粉白光LED架構。
    在反射式的螢光粉結構中,提出在螢光粉反射層加入反射材料-硫酸鋇(BaSO4),並以不同配比試片,驗證出單一螢光粉獲得高演色性的機制(CCT 5500K, CRI 80附近)。最後將倒錐半角臨界條件透鏡設計結合上述機制,應用在2×2 mm2 晶粒的螢光粉白光LED架構,成功驗證出兼具高效率,與高演色性的螢光粉光學結構。


    In this thesis, we analysis the package efficiency and the CRI based on the different phosphor-packaged LEDs. First, we design an inverted cone lens with its side of the lens around a ring phosphor layer structure in the transmissive package for the phosphor layer. The optimized lens not only reduces chip absorption probability of phosphor layer emission light but also enhances the package extraction efficiency. Second, we discuss about the LEDs with the reflective package for the phosphor layer. We mixed BaSO4 and phosphor in the reflective case. We find out the condition high color rendering index due to different proportions with phosphor and BaSO4. Finally, we make several samples of white LED products based on our result. We successfully get the LEDs with high efficiency and high color rendering index and verify our simulation.

    中文摘要 ……………………………………………………………… i Abstract ……………………………………………………………… ii 誌謝 ……………………………………………………………iii 目錄 ……………………………………………………………… iv 圖目錄 ……………………………………………………………vii 表目錄 ……………………………………………………………… xi 符號說明 ……………………………………………………………xiii 第一章 緒論………………………………………………………… 1 1-1 研究背景…………………………………………………… 1 1-2 研究動機與目的…………………………………………… 4 第二章 研究內容與方法…………………………………………… 8 2-1 基本原理…………………………………………………… 8 2-1-1 螢光粉白光LED發光原理………………………………… 8 2-1-2 螢光粉白光LED發光效率………………………………… 10 2-1-3 螢光粉白光LED之螢光粉轉換效率……………………… 13 2-2 環形螢光粉白光LED “理想”封裝萃取效率分析……… 15 2-3 環形螢光粉白光LED封裝萃取效率分析………………… 17 2-4 環形螢光粉白光LED封裝之基礎原理…………………… 18 第三章 系統設備與實驗方法……………………………………… 22 3-1 光線追跡與光學模擬軟體………………………………… 22 3-2 光通量量測設備與方法…………………………………… 25 3-3 封裝樣品製作設備與方法………………………………… 26 3-3-1 封裝樣品製作設備………………………………………… 26 3-3-2 白光LED之環形螢光粉封裝樣品製作方法……………… 29 第四章 白光LED之環形螢光粉封裝結構特性研究……………… 31 4-1 單一角度倒錐透鏡之特性研究…………………………… 31 4-1-1 倒錐透鏡高度與半徑比與光能量分布分析……………… 31 4-1-2 倒錐透鏡半角-側光結構光分布均勻性分析…………… 34 4-2 環形螢光粉封裝萃取效率分析…………………………… 37 4-3 晶粒邊角藍光與倒錐透鏡漏光特性分析………………… 39 4-4 大晶粒與梯度倒錐透鏡環形螢光粉封裝設計…………… 46 4-5 環形螢光粉封裝樣品量測實驗…………………………… 51 4-5-1 環形螢光粉1W封裝量測實驗…………………………… 51 4-5-2 環形螢光粉1W封裝加入膠材透光率模擬比較…………… 54 4-5-3 環形螢光粉5W封裝量測實驗……………………………… 55 4-6 大晶粒環形螢光粉之二次光學倒錐透鏡設計…………… 57 第五章 白光LED之反射環形螢光粉光學結構特性研究………… 67 5-1 螢光粉反射特性量測實驗………………………………… 67 5-1-1 455nm藍光入射螢光粉試片反射特性量測……………… 67 5-1-2 綠光、黃光與紅光對螢光粉反射特性量測……………… 70 5-1-3 綠光、黃光與紅光對螢光粉反射特性量測……………… 75 5-1-4 YAG80911螢光粉:BaSO4試片之不同藍光輻射通量實驗… 77 5-2 反射環形螢光粉白光LED光學模擬……………………… 79 5-3 反射環形螢光粉白光LED模型驗證……………………… 86 5-3-1 YAG80911螢光粉:BaSO4 之3RP LED 樣品驗證………… 88 5-3-2 YAG432螢光粉:BaSO4 之3RP LED 樣品驗證…………… 93 第六章 結論………………………………………………………… 98 參考文獻 ………………………………………………………………101 中英名辭對照表………………………………………………………110 Publication List……………………………………………………113

    1. N. Holonyak, Jr., and S. F. Bevacqua, “Coherent (Visible) Light Emission from Ga(As1-xPx) Junctions,” Appl. Phys. Lett. Vol 1, pp. 82 (1962).
    2. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. Vol 64, pp. 1687-1689 (1994).
    3. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and aphosphor containing a garnet fluorescent material,” United States Patent US 5,998,925, Dec. 7, 1999.
    4. Cree, Inc., http://scn.cree.com/products/pdf-scn/XLampXB-D.pdf.
    5. PHILIPS LUMILEDS, U. S. LLC., http://www.philipslumileds.cn.com/uploads/datasheets/DS61_ZH-S.pdf.
    6. NICHIA.CORP., “NCSW219AT”, http://www.nichia.co.jp/ specifi -cation/en/product/led/NCSW219A-E.pdf.
    7. OSRAM, http://www.osram.com/osram_com/Professionals/Opto_Semi-conductors_%26_LED/Everything_about_LED85033/History_of_LED/index.html.
    8. T. F. McNulty, D. D. Doxsee and J. W. Rose, “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent US 6,686,676 B2, Feb. 3, 2004.
    9. A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur and R. Gaska,“Optimization of mulitichip white solid state lighting source with four ormore LEDs,” Proc. SPIE Vol 4445, pp. 148 (2001).
    10. A. A. Setlur, A. M. Srivastava, H. A. Comanzo and D. D. Doxsee, “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent US 6,685,852 B2, Feb. 3, 2004.
    11. Yole Développement Presented by Jeff Perkins , “LED Manufacturing Technologies & Costs ”,DOE Workshop April 2009,Web: http://www.yole.fr,(2009).
    12. OIDA, Light Emitting Diodes (LEDs) for General Illuminati-on, An OIDA Technology Roadmap Update 2002.
    13. F. Wall, P. S. Martin, and G. Harbers, “High power LED package requirements”, Proc. SPIE Vol 5187, pp. 85 (2004).
    14. D. A. Steigerwald, J. C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. Vol 8(2), pp. 310-320 (2002).
    15. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. Vol 8(2), pp. 339-345 (2002).
    16. J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup,” Jpn. J. Appl. Phys. Vol 44(21), pp. 649-651 (2005).
    17. N. Narendran, “Improved performance white LED,” Proc. SPIE Vol 5941, pp. 594108-1-6 (2005).
    18. N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A , Vol 202(6), pp.60–62 (2005)
    19. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. Vol 86, pp. 243505-1-3 (2005).
    20. H. Luo, J. K. Kim, Y. A. Xi, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Trapped whispering-gallery optical modes in white light-emitting diode lamps with remote phosphor,” Appl. Phys. Lett. Vol 89, pp. 041125-1-3 (2006).
    21. S. C. Allen and A. J. Steckl, “ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection,” J. Display Technol. Vol 3(2), pp. 155-159 (2007).
    22. S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Appl. Phys. Lett. Vol 92, pp. 143309-1-3 (2008).
    23. K. Hohn, A. Debray, P. Schlotter, R. Schmidt and J. Schneider, “wavelength-converting casting composition and its use ,” Siemens Aktiengesellschaft, United States Patent US6,066,861, May 20, 1998.
    24. C. H. Lowery, “Multiple encapsulation of phosphor-LED devices,” Hewlett-Packard Company, United States Patent US 5,959,316, Sep 1, 1998.
    25. T. Yasukawa, S. Shimonishi, and K. Ota ,“White light emitting device,” Toyoda Gosei Co., Ltd., United States Patent US 7,227,190, Sep 22, 2003.
    26. T. F. Soules, S. Weaver, Jr., C. L. Hsing Chen, M. Sommers, B. Kolodin, A. A. Setlur, and T. E. Stecher, “Coated LED with improved efficiency,” Lumination LLC, United States Patent US 7,479,662, Aug 29, 2003.
    27. G. Basin, R. S. West, P. S. Martin, G. Harbers, W. H. Smits, R. F. M. Hendriks, and F. H. Konijn, “Overmolded lens over LED die,” Philips Lumileds Lighting Company, LLC, United States Patent US7,344,902, Feb. 28, 2005.
    28. K. Y. Ng, H. Y. Cheng, and C. W. Chia, “LED display with overlay,” Avago Technologies ECBU IP (Singapore) Pte. Ltd, United States Patent US7,239,080, Mar. 11, 2004.
    29. H. Tamaki, M. Kameshima, and S. Takashima, “Nitride phosphor and production process thereof, and light emitting device,” Nichia Corporation, United States Patent US7,297,293, Oct 18, 2005.
    30. M. T. Lin, M. Y. Lin, and K. Y. Tai ,“Light emitting device,” Industrial Technology Research Institute, United States Patent US7,872,273B2 , Mar. 23 2009.
    31. 劉如熹和王健源,白光發光二極體製作技術,全華科技圖書公司,中華民國九十四年。
    32. Mehmet, C. Becker, S. Weaver, and J. Petroski, “Thermal Management of LEDs: Package to System,” Proc. SPIE Vol 5187, pp. 64 (2004).
    33. M. Arik, S. Weaver, C. Becker, M. Hsing, and A. Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” Presented at ASME/IEEE Int. Electronic Packaging Technical Conf. and Exhibition—InterPACK''03, July 6–11, 2003.
    34. J. Kaufman, IES Lighting Handbook 1981 Reference Volume (Illuminating Engineering Society of North America, New York, 1981).
    35. J. K. Kim, T. Gessmann, H. Luo, and E. F. Schubert, “GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector”, Appl. Phys. Lett. , Vol 84(22), pp. 4508-4510 (2004).
    36. E. F. Schubert, Light Emitting Diodes, Cambridge University Press, Cambridge, 2003.
    37. T. Taguchi, Yamaguchi University, “Light Gets Solid,” SPIE’s OE magazine Oct., pp 13-15 (2003).
    38. S. Aanegola, J. Petroski, and E. Radkov, “Let There Be Light”, OE Magazine Otc., pp. 16 -18 ( 2003).
    39. 陳俊郎, LED 封裝與在內部量子效率的評估之研究,中央大學光電所,碩士論文,中華民 國九十六年。
    40. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron , Vol 8, pp. 339-345 (2002).
    41. M. T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, S. C. Tai, C.H. Liu, J. C. Chen, and C. C. Sun, “Ring Remote Phosphor Structure for Phosphor-Converted White LEDs,” IEEE Photonics Technology Letters, Vol 22, pp. 574-576 (2010).
    42. M.T. Lin, S.P. Ying, M.Y. Lin, K.Y. Tai, S.C. Tai, C.H. Liu, J.C. Chen, and C.C. Sun,“Design of the Ring Remote Phosphor Structure for Phosphor-Converted White-Light-Emitting Diodes,” Japanese Journal of Applied Physics, Vol 49, pp. 072101 (2010).
    43. M.T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, and J. C. Chen, “High power LED package with vertical structure,” Microelectronics Reliability, Vol 52, pp. 878–883 (2012).
    44. R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE Vol 5187, pp. 115-122 (2004).
    45. E. Hecht, Optics, Fourth Edication, Addison Wesley, New York, (2002).
    46. V. N. Mahajan, Optical Imaging and Aberrations, Part Ι Ray Geometrical Optics, SPIE PRESS, Washington, (1998).
    47. Lambda Research Corporation, http://www.lambdares.com.
    48. S. J. Lee, “Analysis of light-emitting diodes by Monte-Carlo photon simulation,” Appl. Opt. Vol 40, pp. 1427-1437 (2001).
    49. keithley, http://www.keithley.com.tw/products/localizedproducts/sour -cemeter/2400.
    50. Instrument Systems, http://www.instrumentsystems.com/products/sp -ectrometers/cas-140ct.
    51. Shin Mei Hua Precision machinery Works Co., Ltd., http://www.smh -super.com.tw/ .
    52. Y. Zhu, N. Narendran, and Y. Gu, “Investigation of the optical properties of YAG:Ce phosphor,” Sixth International Conference on Solid State Lighting, Proc. of SPIE Vol. 6337, pp. 63370S-1(2006).
    53. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” Journal of Display Technology, Vol 3(2), pp. 160 - 175 ( 2007).

    QR CODE
    :::