跳到主要內容

簡易檢索 / 詳目顯示

研究生: 施瀚昇
Han-Sheng Shih
論文名稱: 快離子導體類複合固態電解質於半固態鋰離子電池之研究
NaSICON-type LAGP in composite solid electrolyte for solid-state lithium ion battery
指導教授: 諸柏仁
Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 快離子導體固態鋰電池複合材料
外文關鍵詞: NaSICON, Solid-state lithium battery, Composite solid electrolyte
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於液體電解質無法提供與日俱增能量密度以及安全性,次世代的電池便寄望使用固態電解質來取代液態電解質。然而每種類型的固態電解質都有其優缺點,其中就以擁有極高室溫導電度以及空氣穩定性的快離子導體類(NaSICON)的磷酸鍺鋁鋰(Lithium aluminum germanium phosphate,
    LAGP)無機物和擁有能直接成模且有高化學穩定性的高分子類的Poly(vinyl-idenefluoride-co-hexafluoropropylene) (PVDF-HFP)特別引人注目。然而
    LAGP介面接合不佳以及需高溫使其緻密的缺點和PVDF-HFP無法有效抑制鋰枝晶的問題,限制了它們的發展。遂本篇研究利用簡單的溶劑鑄模法(Solvent-Casting)製作出複合高分子類的PVDF-HFP和氧化物類的LAGP以及鋰鹽的複合固態電解質,並於電極與電解質介面添加微量的液體電解質。發現若單以溶劑澆鑄法成膜會導致LAGP分布不均,但可以反過來利用此特性來避免LAGP與鋰負極發生反應。而以此複合固態電解質與磷酸鋰鐵和鋰箔所組成之半固態電池,能夠在0.3C下穩定充放電100圈還保有99%以上的電容保持率,且發現於0.1C下10wt% LAGP會有最佳的平均電容表現約為140 mAh/g;然而在3C下卻是15wt% LAGP有最佳的平均電容約為85 mAh/g,反應出高低充放電速率其傳遞機制不盡相同,高速率下LAGP會逐漸主導傳遞機制。此外,根據交流阻抗的結果,採用正極介面修飾來改善LAGP與正極相容性不佳所導致的高介面電阻的問題。添加15% LAGP的半電池在經修飾後Rct值從319下降到184,並可使半電池在0.5C下的庫倫效率更進一步提升,說明此介面修飾法在愈高比例的LAGP下會有愈顯著的效果。


    Using solid state electrolyte to improve the safety and the energy density is a promising answer for the next-generation energy storage devices. Among various solid state lithium ion conductors, NaSICON-type ceramic- Lithium aluminum Germanium phosphate(LAGP) catch a lot of attention due to its advantages of high lithium ion conductivity in room temperature and high air stability, but it needs high pressure or temperature to densification to solve the disadvantages which is bad for commercial application. Therefore, we introduce an easy solvent-casting way to synthesis the composite solid state electrolyte. We embedding the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) ceramic particles into the PVDF-HFP matrix. The ionic conductivity of composite solid membrane is around 2 x 10-6 S/cm when the amount of LAGP is 15 wt% almost five times higher than polymer electrolyte. Moreover, the Li|CSE|LiFePO4 cell exhibits long term life time its capacity retention rate is over 99% even run more than 100 cycle in 0.3C. However, higher capacity of 140 mAh/g in 0.1C for 10wt% LAGP, but higher 85 mAh/g in 3C for 15wt% LAGP suggest that the mechanism of ionic transportation is not the same between different current rate. Furthermore, with the interfacial modified, the interfacial resistance of half cell for 15wt% LAGP decreases from 355 to 193 almost half of its original one and the half cell coulombic efficiency is also
    improving.

    摘要 i Abstract iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 鋰離子電池工作原理 3 2-2 鋰電池電解質分析 5 2-2-1 液態電解質 5 2-2-2 高分子類固態電解質 6 2-2-3 氧化物類固態電解質 11 2-2-4 硫化物類固態電解質 18 2-3 複合固態電解質 22 2-3-1 高分子複合氧化物 22 2-3-2 高分子複合硫化物 25 2-3-3 氧化物複合硫化物 27 2-3-4 固態複合液態 (膠態電解質) 28 2-3-5 添加物效應 31 2-4 複合電解質製程 36 2-4-1 溶劑澆鑄法 37 2-4-2 機械應力法 37 2-4-3 浸漬法 38 2-4-4 3D列印法 38 第三章 實驗流程 39 3-1 實驗藥品 39 3-2 實驗器材及儀器 41 3-3 實驗步驟 42 3-3-1 複合固態電解質之製備 42 3-3-2 正極極片之製備及修飾 43 3-3-3 半電池之製備 44 3-3-4 儀器鑑定方法 45 第四章 實驗結果與討論 46 4-1 LAGP品質鑑定 47 4-2 複合固態電解質分析 48 4-3 複合固態電解質之熱穩定性及導電度分析 52 4-4 半固態電池之電性分析 55 4-5 介面電阻分析 60 4-6 半電池極化分析 62 4-7 不均勻複合電解質效果分析 64 4-8 介面修飾分析 67 4-9 製程分析 70 第五章 結論與未來展望 72 5-1 結論 72 5-2 未來展望 72 參考文獻 74

    [1] Züttel, A. Remhof, A. Borgschulte and O. Friedrichs, “Hydrogen: the
    future energy carrier”, Phil. Trans. R. Soc. A, 2010, 368, Pages 3329–3342
    [2] W. Qi, J. G. Shapter, Q. Wu, T. Yin, G. Gao and D. Cui, “Nanostructured
    anode materials for lithium-ion batteries: principle, recent progress and future perspectives”, J. Mater. Chem. A, 2017, 5, Pages 19521–19540
    [3] S. Grugeon, P. Jankowski, D. Cailleu, C. Forestier, L. Sannier, M. Armand, P. Johansson and S. Laruelle “Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds”, Journal of Power Sources, 2019, Volume 427, Pages 77-84
    [4] J. Liang, J. Luo, Q. Sun, X. Yang, R. Li and X. Sun, “Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries”, Energy Storage Materials, 2019, Volume 21, Pages 308-334
    [5] D.E.Fenton, J.M.Parker and P.V.Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 1973, Volume 14, Issue 11, Page 589
    [6] S. B. Aziz, T. J. Woo, M.F.Z. Kadir and H. M. Ahmed, “A conceptual review on polymer electrolytes and ion transport models”, Journal of Science: Advanced Materials and Devices, 2018, Volume 3, Issue 1, Pages 1-17
    [7] H. Yuan, J. Luan, Z. Yang, J. Zhang, Y. Wu, Z. Lu and H. Liu, “Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries”, ACS Appl. Mater. Interfaces, 2020, Pages 7249−7256
    [8] K. S. Ngai , S. Ramesh , K. Ramesh and J. C. Juan, ”A review of polymer electrolytes: fundamental, approaches and applications”, Ionic, 2016, Volume 22, Pages 1259-1279
    [9] K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell and N. P. Balsara, “Detection of subsurface structures underneath dendrites formed on cycled lithiummetal electrodes”, Nature Materials, 2014, Volume 13, Pages 69–73
    [10] N. J. Shah, S. Dadashi-Silab, M. D. Galluzzo, S. Chakraborty, W. S. Loo,
    K. Matyjaszewski and N. P. Balsara, “Effect of Added Salt on Disordered
    Poly(ethylene oxide)-Block-Poly(methyl- methacrylate) Copolymer
    Electrolytes”, Macromolecules, 2021, 54, Pages 1414−1424
    [11] H. Miyashiro, Y. Kobayashi, S. Seki, Y. Mita, A. Usami, M. Nakayama
    and M. Wakihara “Fabrication of All-Solid-State Lithium Polymer
    Secondary Batteries Using Al2O3-Coated LiCoO2”, Chem. Mater., 2005,
    Volume 17, No. 23
    [12] K. M. Abraham and M. Alamgir, ”Li+-Conductive Solid Polymer
    Electrolytes with Liquid-Like Conductivity”, J. Electrochem. Soc., 1990,
    Volume 137, No. 5
    [13] P. Raghavan, J. Manuel, X. Zhao, D. S. Kim, J. y. Ahn and C. Nah,
    “Preparation and electrochemical characterization of gel polymer
    electrolyte based on electrospun polyacrylonitrile nonwoven membranes
    for lithium batteries”, Journal of Power Sources, 2011, Volume 196, Issue
    16, Pages 6742-6749
    [14] J. Vondra´k, M. Sedlarˇı´kova´, J. Velicka´, B. Kla´psˇteˇ, V. Nova´k and
    J. Reiter, “Gel polymer electrolytes based on PMMA”, Electrochimica
    Acta, 2001, Volume 46, Issues 13–14, Pages 2047-2048
    [15] Y. Liu, P. He and H. Zhou, “Rechargeable Solid-State Li–Air and Li–S
    Batteries: Materials, Construction, and Challenges”, Adv. Energy Mater.,
    2017, 1701602
    [16] R. DeWees and H. Wang, “Synthesis and Properties of NASICON-type
    LATP and LAGP Solid Electrolytes”, ChemSusChem, 2019, Volume 12,
    Issue16, Pages 3713-3725
    [17] B. Kumar, D. Thomas and J. Kumarz, “Space-Charge-Mediated
    Superionic Transport in Lithium Ion Conducting Glass–Ceramics”,
    Journal of The Electrochemical Society, 2009, Volume 156, No. 7, Pages
    506-513
    [18] D. Safanama and S. Adams, “High efficiency aqueous and hybrid lithium-
    air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting
    membranes”, Journal of Power Sources, 2017, Volume 340, Pages 294-301
    [19] X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu and J. Luo Long, “Cycling
    Life Solid-State Li Metal Batteries with Stress Self-Adapted Li/Garnet
    Interface”, Nano Lett., 2020, Volume 20, Pages 2871−2878
    [20] Y.Zhu, X.He and Y.Mo, “Origin of Outstanding Stability in the Lithium
    Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based
    on First-Principles Calculations”, ACS Appl. Mater. Interfaces, 2015,
    Volume 7, Pages 23685−23693
    [21] L. He, Q. Sun, C. Chen, J. A. S. Oh, J. Sun, M. Li, W. Tu, H. Zhou, K.
    Zeng and L. Lu, “Failure Mechanism and Interface Engineering for
    NASICON-Structured All-Solid-State Lithium Metal Batteries”, ACS
    Appl. Mater. Interfaces, 2019, Volume 11, Pages 20895−20904
    [22] Y. Liu, Q. Sun, Y. Zhao, B. Wang, “Stabilizing the Interface of NASICON
    Solid Electrolyte against Li Metal with Atomic Layer Deposition”, ACS
    Appl. Mater. Interfaces, 2018, Volume 10, Pages 31240−31248
    [23] M. P. O’Callaghan, D. R. Lynham, E. J. Cussen and G. Z. Chen ,
    “Structure and Ionic-Transport Properties of Lithium-Containing Garnets
    Li3Ln3Te2O12”, Chem. Mater., 2006, Volume 18, Pages 4681-4689
    [24] V. Thangadurai, H. Kaack, and W. J. F. Weppner, ”Novel Fast Lithium Ion
    Conduction in Garnet-Type Li5La3M2O12”, J. Am. Ceram. Soc., 2003,
    Volume 86, Issue 3, Pages 437–440
    [25] V. Thangadurai and W. Weppner, “Li6ALa2Nb2O12: A New Class of Fast
    Lithium Ion Conductors with Garnet-Like Structure”, J. Am. Ceram.Soc.,
    2005, Volume 88, Issue 2, Pages 411-418
    [26] R. Murugan, V. Thangadurai and W. Weppner, “Fast Lithium Ion
    Conduction in Garnet-Type Li7La3Zr2O12”, Angew. Chem. Int., 2007,
    Volume 46, Pages 7778 –7781
    [27] F. Han, Y. Zhu , X. He , Y. Mo and C. Wang, “Electrochemical Stability
    of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes”, Adv. Energy Mater.,
    2016, Volume 6, Issue 8, 1501590
    [28] L. Truong and V. Thangadurai, “Soft-Chemistry of Garnet-Type
    Li5+xBaxLa3-xNb2O12 (x = 0, 0.5, 1):Reversible H+ To Li+ Ion-Exchange
    Reaction and Their X-ray, 7Li MAS NMR, IR, and AC Impedance
    Spectroscopy Characterization”, Chem. Mater., 2011, Volume 23, Pages
    3970–3977
    [29] H. Xu, Y. Li, A. Zhou, N. Wu, S. Xin, Z. Li and J. B. Goodenough,
    “Li3N‑Modified Garnet Electrolyte for All-Solid-State Lithium Metal
    Batteries Operated at 40 °C”, Nano Lett., 2018, Volume 18, Pages
    7414−7418
    [30] Z. Zhang, A. R. Gonzalez, and K. L. Choy, “Boron Nitride Enhanced
    Garnet-Type (Li6.25Al0.25La3Zr2O12) Ceramic Electrolyte for an All-Solid-
    State Lithium-Ion Battery”, ACS Appl. Energy Mater., 2019, Volume 2,
    Pages 7438−7448
    [31] Y. Inaguma, C. Liquan, M. Itoh and T. Nakamura, “High Ionic
    Conductivity In Lithium Lanthanum Titanate”, Solid State
    Communications, 1993, Volume 86, No. 10, Pages 689-693
    [32] K. Liu, R. Zhang, J. Sun, M. Wu, and T. Zhao, “Polyoxyethylene-
    (PEO)|PEO−Perovskite|PEO Composite Electrolyte for All-Solid-State
    Lithium Metal Batteries”, ACS Appl. Mater. Interfaces, 2019, Volume 11,
    Pages 46930−46937
    [33] L.C. Kin, Z. Liu, O. Astakhov, S. N. Agbo, H. Tempel, S. Yu, H. Kungl,
    R. A. Eichel, U. Rau, T. Kirchartz and T. Merdzhanova, “Efficient Area
    Matched Converter Aided Solar Charging of Lithium Ion Batteries Using
    High Voltage Perovskite Solar Cells”, ACS Appl. Energy Mater., 2020,
    Volume 3, Pages 431−439
    [34] M. Y. Wang, S. H. Han, C.Q. Niu, Z. S. Chao, W. B. Luo, H. G. Jin, W. J.
    Yi, Z. Q. Fan and J. C. Fan, “Perovskite Lithium Lanthanum Titanate-
    Modified Separator as Both Adsorbent and Converter of Soluble
    Polysulfides toward High-Performance Li‑S Battery”, ACS Sustainable
    Chem. Eng., 2020, Volume 8, Pages 16477−16492
    [35] X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H.
    Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman and L. Hu,
    “Negating interfacial impedance in garnet-based solid-state Li metal
    batteries”, Nature Materials, 2017, Volume 16, Pages 572–579
    [36] S. Wenzel, S. Randau, T. Leichtweiß, D. A. Weber, J. Sann, W. G. Zeier
    and J. Janek, “Direct observation of the interfacial instability of the fast
    ionic conductor Li10GeP2S12 at the lithium metal anode”, Chem.
    Mater., 2016, Volume 28, Issue 7, Pages 2400–2407
    [37] A. Sakuda, A. Hayashi and M. Tatsumisago, “Interfacial Observation
    between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-
    State Lithium Secondary Batteries Using Transmission Electron
    Microscopy”, Chem. Mater., 2010, Volume 22, Pages 949–956
    [38] W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim and G. Ceder, “Interface
    Stability in Solid-State Batteries”, Chem. Mater., 2016, Volume 28, Issue 1,
    Pages 266–273
    [39] P. J. Lian, B. S. Zhao, L. Q. Zhang, N. Xu, M. T. Wu and X. P. Gao,
    “Inorganic sulfide solid electrolytes for all-solid state lithium secondary
    Batteries”, J. Mater. Chem. A, 2019, Volume 7, Issue 36, Pages 20540-
    20557
    [40] H. D. Lim, X. Yue, X. Xing, V. Petrova, M. Gonzalez, H. Liu and P. Liu
    “Designing solution chemistries for the low-temperature synthesis of
    sulfide-based solid electrolytes”, J. Mater. Chem. A, 2018, Volume 6,
    Issue 17, Pages 7370-7374
    [41] N. Minafra, K. Hogrefe, F. Barbon, B. Helm, C. Li, H. M. R. Wilkening
    and W. G. Zeier, “Two-Dimensional Substitution: Toward a Better
    Understanding of the Structure−Transport Correlations in the Li-
    Superionic Thio-LISICONs”, Chem. Mater., 2021, Volume 33, Pages
    727−740
    [42] Y. Seino, T. Ota, K. Takada, A. Hayashic and M. Tatsumisago, “A
    sulphide lithium super ion conductor is superior to liquid ion conductors
    for use in rechargeable batteries”, Energy & Environmental Science, 2014,
    Volume 7, Issue 2, Pages 627-631
    [43] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, “A lithium
    superionic conductor”, Nature Materials, 2011, Volume 10, Pages 682–686
    [44] M. Nagao, A. Hayashi, and M. Tatsumisago, “Bulk-Type Lithium Metal
    Secondary Battery with Indium Thin Layer at Interface between Li
    Electrode and Li2S-P2S5 Solid Electrolyte”, Electrochemistry, 2012,
    Volume 80, Issue 10, Pages 734-736
    [45] N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, and T. Sasaki,
    “Enhancement of the High-Rate Capability of Solid-State Lithium
    Batteries by Nanoscale Interfacial Modification”, Adv. Mater., 2006,
    Volume 18, Pages 2226–2229
    [46] T. Ohtomo, A. Hayashi, M. Tatsumisago and K. Kawamoto, “All-solid-
    state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-
    step mechanical milling”, Journal of Solid State Electrochemistry, 2013,
    Volume 17, Pages 2551–2557
    [47] S. Srivastava, J. L. Schaefer, Z. Yang, Z. Tu and L. A. Archer, “25th
    Anniversary Article: Polymer–Particle Composites: Phase Stability and
    Applications in Electrochemical Energy Storage”, Adv. Mater., 2014,
    Volume 26, Pages 201–234
    [48] S. Jayanthi, K. Kulasekarapandian, A. Arulsankar, K. Sankaranarayanan
    and B. Sundaresan, “Influence of nano-sized TiO2 on the structural,
    electrical, and morphological properties of polymer-blend electrolytes
    PEO-PVC-LiClO4”, Journal of Composite Materials, 2015, Volume 49, Issue 9, Pages 1035-1045
    [49] Y. Li and H. Wang, “Composite Solid Electrolytes with NASICON-Type
    LATP and PVdF−HFP for Solid-State Lithium Batteries”, Ind. Eng. Chem.
    Res., 2021, Volume 60, Pages 1494−1500
    [50] Z. Wang, S. Wang, A. Wang, X. Liu, J. Chen, Q. Zeng, L. Zhang, W. Liu
    and L. Zhang, “Covalently linked metal–organic framework(MOF)-
    polymer all-solid-state electrolyte membranes for room temperature high
    performance lithium batteries”, J. Mater. Chem. A, 2018, Volume 6, Pages
    17227-17234
    [51] X. Yuan, C. Sun, J.N. Duan, J. Fan, R. Yuan, J. Chen, J. K. Chang, M.
    Zheng and Q. Dong, “A polyoxometalate-based polymer electrolyte with
    an improved electrode interface and ion conductivity for high-safety all-
    solid-state batteries”, J. Mater. Chem. A, 2019, Volume 7, Pages 15924-
    15932
    [52] K. Zhu, Y. Liu and J. Liu, “A fast charging/discharging all-solid-state
    lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film
    electrolyte”, RSC Adv., 2014, Volume 4, Pages 42278-42284
    [53] S.K. Kim, Y.C. Jung, D.H. Kim, W.C. Shin, M. Ue and D.W. Kim,
    “Lithium-Ion Cells Assembled with Flexible Hybrid Membrane
    Containing Li+-Conducting Lithium Aluminum Germanium Phosphate”,
    Journal of The Electrochemical Society, 2016, Volume 163, Issue 6,
    Pages 974-980
    [54] H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo and X. Sun, “Rational Design
    of Hierarchical “Ceramic-in-Polymer” and “Polymer-in-Ceramic”
    Electrolytes for Dendrite-Free Solid-State Batteries”, Adv. Energy Mater.,
    2019, Volume 9, Issue 17, 1804004
    [55] S. Chena, J. Wanga, Z. Zhanga, L. Wu, L. Yao, Z. Wei, Y. Deng, D. Xie,
    X. Yao and X. Xu, “In-situ preparation of poly(ethylene oxide)/Li3PS4
    hybrid polymer electrolyte with good nanofiller distribution for
    rechargeable solid-state lithium batteries”, Journal of Power Sources,
    2018, Volume 387, Pages 72-80
    [56] I. Villaluenga, K. H. Wujcik, W. Tong, D. Devaux, D. H. C. Wong, J. M.
    DeSimone and N. P. Balsara, “Compliant glass–polymer hybrid single ion-
    conducting electrolytes for lithium batteries”, PNAS, 2016, Volume
    113, Issue 1, Pages 52-57
    [57] E. Rangasamy, G. Sahu, J. K. Keum, A. J. Rondinone, N. J. Dudney and
    C. Liang, “A high conductivity oxide–sulfide composite lithium superionic
    conductor”, J. Mater. Chem. A, 2014, Volume 2, Issue 12, Pages 4111-
    4116
    [58] F. Baskoro, H. Q. Wong and H. J. Yen, “Strategic Structural Design of a
    Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery”,
    ACS Appl. Energy Mater., 2019, Volume 2, Pages 3937−3971
    [59] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, “Electrolytes for Li-
    ion transport – Review”, Solid State Ionics, 2015, Volume 276, Pages 107-
    126
    [60] K. Xu, “Electrolytes and Interphases in Li-Ion Batteries and Beyond”,
    Chem. Rev., 2014, Volume 114, Pages 11503−11618
    [61] J. H. Baik, S. Kim, D. G. Hong, and J. C. Lee, “Gel Polymer Electrolytes
    Based on Polymerizable Lithium Salt and Poly(ethylene glycol) for
    Lithium Battery Applications”, ACS Appl. Mater. Interfaces, 2019,
    Volume 11, Pages 29718−29724
    [62] C. Wang, Q. Sun, Y. Liu, Y. Zhao, X. Li, X. Lin, M. N. Banis, M. Li, W.
    Li, K. R. Adair, D. Wang, J. Liang, R. Li, L. Zhang, R. Yang, S. Lu and X.
    Sun, “Boosting the Performance of Lithium Batteries with Solid-Liquid
    Hybrid Electrolytes:Interfacial Properties and Effects of Liquid
    Electrolytes”, Nano Energy, 2018, Volume 48, Pages 35-43
    [63] B. Fan, Y. Xu, R. Ma, Z. Luo, F. Wang, X. Zhang, H. Ma, P. Fan, B. Xue
    and W. Han, “Will Sulfide Electrolytes be Suitable Candidates for
    Constructing a Stable Solid/Liquid Electrolyte Interface?”, ACS Appl.
    Mater. Interfaces, 2020, Volume 12, Pages 52845−52856
    [64] W. Zhang, J. Nie, F. Li, Z. L. Wang and C. Sun, “A durable and safe solid-
    state lithium battery with a hybrid electrolyte Membrane”, Nano Energy,
    2018, Volume 45, Pages 413-419
    [65] M.A.K.L. Dissanayake, P.A.R.D. Jayathilaka, R.S.P. Bokalawala, I.
    Albinsson, B.E. Mellander, “Effect of concentration and grain size of
    alumina filler on the ionic conductivity enhancement of the
    (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte”, Journal of Power
    Sources, 2003, Volume 119–121, Pages 409–414
    [66] W. Gang, J. Roos and D. Brinkmann, “Comparison of NMR and
    conductivity in (PEO)8LiClO4+γ-LiAlO2”, Solid State Ionics, 1992,
    Volume 53-59, Pages 1102-1105
    [67] J. Zhang , N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang and H. Li, “Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide”, Nano Energy, 2016, Volume 28, Pages 447–454
    [68] W. Liu, N. Liu, J. Sun,. P.C. Hsu, Y. Li, H. W. Lee and Y. Cui, “Ionic
    Conductivity Enhancement of Polymer Electrolytes with Ceramic
    Nanowire Fillers”, Nano Lett., 2015, Volume 15, Pages 2740−2745
    [69] Y. C. Jung, M. S. Park, C. H. Doh, D. W. Kim, “Organic-inorganic hybrid
    solid electrolytes for solid-state lithium cells operating at room
    temperature”, Electrochimica Acta, 2016, Volume 218, Pages 271–277
    [70] 張育豪, “改善鋰離子電池電性之新穎電解液添加劑”, 碩士論文, 化學
    學系, 國立中央大學, 2017
    [71] K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, “High lithium ion conducting
    solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M =
    Ti, Ge and 0 ≤ x ≤ 0.5)”, Journal of the European Ceramic Society, 2015,
    Volume 35, Issue 5, Pages 1477-1484
    [72] Z. J. Huang, J. Jiang, G. Xue and D. S. Zhou, “β-Phase Crystallization of
    Poly(vinylidene fluoride) in Poly(vinylidenefluoride)/Poly(ethyl-
    methacrylate) Blends”, Chinese J. Polym. Sci., 2019, Volume 37, Pages
    94–100
    [73] L. F. Malmonge, J. A. Malmonge and W. K. Sakamoto, “Study of
    Pyroelectric Activity of PZT/PVDF-HFP Composite”, Material Research,
    2003, Volume 6, No. 4, Pages 469-473
    [74] K. Gohel, D. K. Kanchan and C. Maheshwaran, “Electrical and Dielectric Properties of PVdF-HFP –PMMA – (PC+DEC)- LiClO4 Based Gel Polymer Electrolyte”, AIP Conference Proceedings, 2018, Volume 1942, Issue 1, 140081
    [75] H. Yu, J. S. Han, G. C. Hwang, J. S. Cho, D. W. Kang and J. K. Kim,
    “Optimization of high potential cathode materials and lithium conducting
    hybrid solid electrolyte for high-voltage all-solid-state batteries”,
    Electrochimica Acta, 2021, Volume 365, 137349
    [76] P. Bai, J. Guo, M. Wang, A. Kushima, L. Su, J. Li, F. R. Brushett and M.
    Z. Bazant, “Interactions between Lithium Growths and Nanoporous
    Ceramic Separators”, Joule, 2018, Volume 2, Issue 11, Pages 2434-2449
    [77] P. Hartmann, T. Leichtweiss, M. R. Busche, M. Schneider, M. Reich, J.
    Sann, P. Adelhelm and J. Janek, “Degradation of NASICON-Type
    Materials in Contact with Lithium Metal:Formation of Mixed Conducting
    Interphases (MCI) on Solid Electrolytes”, J. Phys. Chem. C, 2013, Volume
    117, Pages 21064−21074
    [78] 葉珈伶, “官能基化二氧化鈦複合電解質於固態鋰電池研究”, 碩士論
    文, 化學學系, 國立中央大學, 2019

    QR CODE
    :::