| 研究生: |
翁再賢 Zai-Xian Weng |
|---|---|
| 論文名稱: |
LiCoO2陰極材料重要製程評估與改質研究 Evaluation of Procedures for the Synthesis of LiCoO2 Cathode Materials and Improvements Thereby |
| 指導教授: |
費定國
George Ting-Kuo Fey |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 鋰鈷氧化物 、電化學特性 、循環伏安法 、陰極材料 、鋰電池 |
| 外文關鍵詞: | Electrochemical Properties, Cathode Materials, LiCoO2, Lithium Battery, Cyclic Voltammetry |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
初步以文獻中選出具代表性的十種製程—P-1至P-10(P.42,表06)—合成LiCoO2產物,於相同條件下作電池循環測試後,發現初始可逆電容量以固態法P-1的154mAh/g為最高;若以電容量維持率80%為標準來比較各製程材料之循環壽命,則以溶液法P-3的81次為最佳。接著,將10種製程分別以其原料成本、耗電成本、長循環測試以及初次可逆電容量等作為評估條件,經過權重分析計算後,結果以P-3有最高的權重分析值,其次P-5及P-1,結果顯示P-3為十種製程當中兼具電池性能高以及經濟成本低兩大優點的製程。
接著吾人針對P-3製程作合成條件之最適化研究,改變其煆燒溫度、煆燒時間、鋰計量數以及煆燒氣氛等變因後發現,當煆燒溫度800℃、煆燒時間10小時及鋰計量數為1時,於空氣下煆燒其所合成出來的產物擁有最佳的電池性能,其初始可逆電容量為154 mAh/g,經過30次循環後,可逆電容量維持率為92%。
為了增加循環穩定性,吾人分別以鎂取代部分鈷及摻雜微量鍶離子兩種變因,研究其對材料電容量及循環穩定性的影響。結果發現以LiMg0.025Co0.975O2材料的電池性能最佳,初次可逆電容量153mAh/g,循環壽命為110次,顯示以鎂取代部分鈷對材料之循環穩定性有相當大的助益。另外,於材料中摻雜微量鍶離子後,發現產物會由於鍶離子的加入,而使其初始可逆電容量降低,並且降低了其循環穩定性,並未達到預期摻雜微量鍶離子之效果。
In this study, ten typical processes – P-1 to P-10 – were chosen for the synthesis of LiCoO2. Among all the processes, P-1 resulted in a material with the highest first-cycle discharge capacity (154 mAh/g). However, P-3 yielded products with the lowest capacity fade (charge retention at the end of 81 cycles was 80%). Based on the material cost, cyclability and the first-cycle discharge capacity, P-3 was adjudged the best method, followed by P-5 and P-1.
Having determined that P-3 was the best synthetic route, we proceeded to examine the best conditions for the P-3 process. A calcination temperature of 800℃ and heat treatment duration of 10 hours in air were found to be the optimal conditions. A product obtained under these conditions showed a first-cycle discharge capacity of 154 mAh/g, retaining 92% of the capacity after 30 cycles.
The synthetic procedure P-3 was extended to obtain the Mg-doped composition, LiMg0.025Co0.975O2. The material gave a first-cycle discharge capacity of 153 mAh/g. However, it could sustain 110 cycles before 20% of its capacity was lost. Similarly, a Sr-doped LiCoO2 composition was also studied. Doping with Sr was detrimental not only to the deliverable capacity, but also reduced cycling stability.
1. J. R. Dahn, A. K. Sleigh, H. Shi, B. M. Way, W. J. Weydanz, J. N. Reimers, Q. Zhong and U. V. Sacken, “Lithium Batteries: New Materials, Developments and Perspectives (Ed. by G. Pistoia) ”, Chap. 1, p.3, Elsevier (1994).
2. For example, see ‘Cellular Phone Recall May Cause Setback for Moli’, Toronto Globe and Mail, August 15,(1989, Toronto Canada).
3. For example, see ‘Cellular Phone Recall May Cause Setback for Moli’, Toronto Globe and Mail, August 15,(1989, Toronto Canada).
4. For example, see Adv. Batt. Technology 25, No. 10, 4(1989).
5. T. Nagaura and K. Tozawa, Progess in Batteries and Solar Cells, 9, 209 (1990).
6. D.W. Murphy, J. Broadhead, B.C. H. Steele, M. Armand, Material for Advanced Batteries, Editor, Plenum Press, New York, 145 (1980).
7. 許雪萍, 工業材料, 130, 104(1997).
8. G. E. Blomgren, Lithium Batteries, Jean-Paul Gabano, Editor, Academic Press (1983).
9. K. Mizushima, P. C. Jones, P.J. Wiseman and J.B. Goodenough 15, 783(1990).
10. J. Pierre and P. Ramos, J. Power Sources, 54, 120 (1995).
11. M. Kakihana, J. Sol-Gel Science and Technology, 6, 7 (1996).
12. R. J. Gummow, M. M. Thackeray, W. I. F. David and S. Hull, Material Research Bulletin, 27, 327 (1992).
13. E. Rossen, J. N. Reimers and J. R. Dahn, Solid State Ionics, 62, 53 (1993).
14. 謝明憲, 碩士論文, "LiCoO2:新型陰極材料研製", 國立中央大學, 中華民國臺灣 (1990).
15. G. T. K. Fey, M. C. Hsieh and T. J. Lee, J. Power Sources, 44, 673 (1993).
16. T. Nakamura and A. Kajiyama, J. European Ceramic Soc., 19, 871 (1999).
17. M. Yoshio, H. Tanaka, K. Tominaga, and H. Noguchi, J. Power Sources, 40, 347 (1992).
18. S. Pyun and Y.M. Choi, J. Power Sources, 68, 524 (1997).
19. J. N. Reimers and J. R. Dahn, J. Electrochem. Soc., 139, 2091 (1992).
20. C. Delmas and I. Saadoune, Solid State Ionics, 53, 370 (1992).
21. J. Kim, P. Fulmer, and A. Manthiram, Material Research Bulletin, 34, 571 (1999).
22. R. Gover, M. Yonemura , A. Hirano, R. Kanno, Y. Kawamoto, C. Murphy, B. Mitchell and J. W. Richardson Jr., J. Power Sources, 81, 535 (1999).
23. C. J. Brinker and G. W. Scherer, SOL-GEL SCIENCE-The Physics and Chemistry of Sol-Gel Processing, p.834.
24. 陳國松, 碩士論文, "鋰離子電池陰極材料溶膠-凝膠製程研究", 國立中央大 學, 中華民國臺灣 (1995).
25. Y. K. Sun, I. H. Oh, S. A. Hong, J. Mater. Sci., 31, 3617 (1996).
26. G. T. K. Fey, K. S. Chen, B. J. Hwang, and Y. L. Lin, J. Power Sources, 68/2, 519 (1997).
27. 袁正宇, 碩士論文, "鋰離子電池層狀及反尖晶石陰極材料溶膠-凝膠法製程研究", 國立中央大學, 中華民國臺灣 (1999).
28. P. N. Kumta, D. Gallet. A. Waghray, G. E. Blomgren and M. P. Setter, J. Power Sources, 72, 91 (1998).
29. W. S. Yoon, K. B. Kim, J. Power Sources, 81, 517, (1999).
30. S.G. Kang, S.Y. Kang, K. S. Ryu and S. H. Chang, Solid State Ionics, 120, 155 (1999).
31. Y. K. Sun, J. Power Sources, 83, 223, (1999).
32. H. Yan, X. Huang, Z. Lu, H. Huang, R. Xue, and L. Chen, J. Power Sources, 68, 530, (1997).
33. H. Yan, X. Huang, H. Li and L. Chan, Solid State Ionics, 113, 11 (1998).
34. V. Subramanian, C.L. Chen and G.T.K. Fey, J. Material Chemistry (2001) (In press).
35. C.Y. Yao, T.H. Kao, C.H. Cheng, J.M. Chen and W.M. Hurng, J. Power Sources, 54, 491 (1995).
36. Y. Li, C. Wan, Y. Wu, C. Jiang and Y. Zhu, J. Power Sources, 85, 294 (2000).
37. D. Caruant, N. Baffier, B. Garcia and J. P. P. Ramos, Solid State Ionics, 91, 45 (1996).
38. X. Wang, J. Horvat, D. H. Bradhurst, H. K. Liu and S. X. Dou, J. Power Sources, 85, 279 (2000).
39. R. Gover,R. Kanno, B. Mitchell, a. Hirano and Y. Kawamoto, J. Power Sources, 90, 82 (2000).
40. J. Cho and B. Park, J. Power Sources, 92, 35 (2001).
41. C. Delmas, I. Saadoune, Solid State Ionics, 53, 370(1992).
42. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta, 38, 1159(1993).
43. C.D.W. Jones, E. Rossen, J.R. Dahn, Solid State Ionics, 68, 65(1994).
44. G.A. Nazri, A. Rougier, K.F. Kia, Mater. Res. Soc. Symp. Proc., 453, 635(1997).
45. Y. Jang, B. Huang, H. Wang, D.R. Sadoway, G. Ceder, Y.M. Chiang, H. Liu, H. Tamura, J. Electrochem. Soc., 146, 862(1999)
46. S.T. Myung, N. Kumagai, S. Komaba, H.T. Chung, Solid State Ionics, 139, 47(2001).
47. W. Haung, R. Frech, Solid State Ionics, 86, 395(1996).
48. R. Alcantara, P. Lavela, J.L. Tirado, R. Stoyanova, E. Zhecheva, J. Solid State Chem., 134, 265 (1997).
49. R. Stoyanova, E. Zhecheva, Solid State Ionics, 73, 233 (1994).
50. H. Tukamoto, A.R. West, J.L. Tirado, E. Zhecheva, R. Stoyanova, J. Solid State Electrochem., 3, 121(1999).
51. H. Tukamoto, A.R. West, J. Electrochem. Soc., 144, 3164 (1997).
52. M. Broussely, P. Biensan, B. Simon, Electrochim. Acta, 45, 3 (1999).
53. J. Cho, Chem Mater., 12, 3089 (2000).
54. C.C. Chang, J.Y. Kim, P.N. Kumta, J. Electrochem. Soc., 147, 1722 (2000).
55. C. Pouillerie, L. Croguennec, P.H. Biensen, P. Willmann, C. Delmas, J. Electrochem. Soc., 147, 2061 (2000).
56. C. Pouillerie, L. Croguennec , C. Delmas, Solid State Ionics, 15, 132 (2000).
57. J. Cho, G.B. Kim, H.S. Lim, C.S. Kim, S.I. Yoo, Electrochem. Solid State Lett.2 (1999) 607.
58. J. Cho, Y.J. Kim, B. Park, Chem. Mater. 12 (2000) 3788.
59. J. Cho, Y.J. Kim, B. Park, J. Electrochem. Soc. 148 (2001) A1110.
60. J. Cho, C.S. Kim, S.I. Yoo, Electrochem. Solid State Lett., 3, 362 (2000).
61. J. Cho, T.J. Kim, Y.J. Kim, B. Park, Electrochem. Solid State Lett., 4, A159 (2001).
62. H.J. Kweon, S.J. Kim, D.J. Park, Park, J. Power Sources 88, 255 (2000).
63. H. J. Kweon, D.G. Park, Electrochem. Solid State Lett.3, 128 (2000).
64. J. Cho, T.J. Kim, Y.J. Kim, B. Park, Chem. Commun., 1074 (2001).
65. T. Numata, C. Amemiya, T. Kumechi, M. Shirakata, M. Yonezawa, J. Power Sources, 97-98, 358 (2001).
66. M. Mladenov, R. Stoyanova, E. Zhecheva, S. Vassilev, Electrochem. Commun. 3, 410 (2001).
67. Z. F. Ma, X.Q. Yang, X.Z. Liao, X. Sun, J. McBreen, Electrochem. Commun. 3, 425 (2001).
68. J. Cho, Chem. Mater. 13, 4537 (2001).
69. J. Cho, Y.J. Kim, T.J. Kim, B. Park, J. Electrochem. Soc. 149, A127 (2002).
70. Y. Fujita, K. Amine, J. Maruta and H. Yasuda, J. Power Sources 68, 126 (1997).
71. C. C. Chang and P. N. Kumta, J. Power Sources 75, 44 (1998).
72. G.T.K. Fey, R.F. Shiu, V. Subramanian, J.G. Chen, C.L. Chen, J. Power Sources, 103, 265 (2001).
73. G.T.K. Fey, V. Subramanian, J.G. Chen, Electrochem. Commun., 3, 234 (2001).
74. G.T.K. Fey, V. Subramanian, J.G. Chen, Mater. Lett., 52, 197 (2002).
75. G.T.K. Fey, V. Subramanian, C.Z. Lu, Solid State Ionics, 7, 210 (2001).
76. H. J. Kweon, S.S. Kim, G.B. Kim and D.G. Park, J. Mater. Sci Lett, 17, 84 (1998).
77. H. J. Kweon, G.B. Kim, H.S. Lim, S.S. Nam and D.G. Park, J. Power Sources 83, 84 (1999).
78. E. Zhecheva, R. Stoyanova, Solid State Ionics, 66, 143 (1993).
79. J. R. Dahn, E. W. Fuller, M. Obrovac, and U. von Sacken, Solid State Ionics, 69, 265 (1994).
80. Z. Zhang, D. Fouchard, J. R. Rea, J. Power Sources, 70, 16 (1998).
81. Y. K. Sun, Electrochem. Comm., 2, 6, (2000).
82. Y. B. Shim, E. D. Jeong and M. S. Won, Electrochemical Society Proceedings, 18, 252 (1997).
83. W. S. Yoon, K. K. Lee and K. B. Kim, Electrochem. and Solid-State Letters, 4, A35 (2001).
84. J. Cho, H. S. Jung, Y. C. Park, G. B. Kim and H. S. Lim, J. Electrochem. Soc., 147, 15 (2000).
85. C. Julien, M. A. C. Lopez, T. Mohan, S. Chitra, P. Kalyani and S. Gopukumar, Solid State Ionics, 135, 241 (2000).