| 研究生: |
林孟頡 Lin Meng Jie |
|---|---|
| 論文名稱: |
利用免乾燥方法製作混合基質薄膜 Fabricating Ideal Gas Separation Membrane by Drying-Free Process |
| 指導教授: |
張博凱
Bor Kae Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 氣體分離 、混合基質薄膜 、有機金屬框架 、非乾燥方法 |
| 外文關鍵詞: | Gas separation, Mixed Matrix Membranes, Metal-Organic Frameworks, Drying-Free |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的幾十年中,氣體分離已成為一個重要問題。許多材料用於分離氣體。為了進行良好的氣體分離並降低製造價格,選擇使用混合基質薄膜 (MMM)。因此,我們用多孔材料和聚合物製備混合基質薄膜,以高效分離氣體。
本研究展示了以傳統方式和免乾燥方式製造 MMM 的結果。雖然 HKUST-1 是一種相對容易合成的材料,但它具有吸濕性。以免乾燥方式將 HKUST-1 添加到 Pebax®2533 中可以減少 HKUST-1 吸水的機會。
在這項研究中,通過免乾燥方式製成的 MMM 在 HKUST-1 和 Pebax®2533 之間具有良好的連接性。它還比傳統的 MMM 有著更好的氣體分離效果。三種薄膜他們對氮氣的通透量是很接近的,不過傳統的MMM,他二氧化碳的通透量比Pebax®2533高出了1.1倍,而免乾燥方法製成的MMM,其二氧化碳的通透量比Pebax®2533高出了1.5倍。故免乾燥方法製成的MMM有最好的氣體分離效果。
Nowadays, global warming is a serious problem. Due to the development of technology, lots of greenhouse gases are discharged into the atmosphere. Gas separation has become an important issue in the past decades. Lots of materials are used to separate the gases. Although inorganic membranes have the best gas separation performance, they have a high cost to fabricate. In order to perform great gas separation and lower the fabrication price, mixed matrix membranes (MMMs) are chosen to use. Therefore, we prepare MMMs with porous material and polymer to separate the gases at high performance.
This research presents the result of fabricating the MMMs in the traditional way and in a drying-free way. Although HKUST-1 is one such material that can be synthesized relatively easily, it is hygroscopic. Its structure will be damaged permanently after adsorbing too much water. Adding HKUST-1 into Pebax®2533 by the drying-free way can reduce the chance for HKUST-1 to absorb water.
In this work, the HKUST-1 and MMMs are tested by XRD, TGA, SEM, and FTIR. They were proven to be successfully synthesized. The MMM which is made by a drying-free process has a good connection between the HKUST-1 and Pebax®2533. It also performs the best gas separation among the Pebax®2533 membrane and traditional MMM. Its CO2 permeability increased 1.5 times compared to the pure Pebax®2533 membrane and 1.1 times compared to traditional MMM. Although drying-free MMM has better gas separation performance at 10 weight percent, its performance drops as its weight loading were add up to over 20 weight percent due to the aggregation.
1. Sabetghadam, A., et al., Metal organic framework crystals in mixed‐matrix membranes: impact of the filler morphology on the gas separation performance. Advanced Functional Materials, 2016. 26(18): p. 3154-3163.
2. Esposito, E., et al., Glassy PEEK-WC vs. rubbery Pebax® 1657 polymers: Effect on the gas transport in CuNi-MOF based mixed matrix membranes. Applied Sciences, 2020. 10(4): p. 1310.
3. Burggraaf, A.J., Important characteristics of inorganic membranes, in Membrane Science and Technology. 1996, Elsevier. p. 21-34.
4. Aroon, M., et al., Performance studies of mixed matrix membranes for gas separation: A review. Separation and Purification Technology, 2010. 75(3): p. 229-242.
5. Hunger, K., et al., Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes, 2012. 2(4): p. 727-763.
6. Li, H., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999. 402(6759): p. 276-279.
7. Kinoshita, Y., et al., The crystal structure of bis (adiponitrilo) copper (I) nitrate. Bulletin of the Chemical Society of Japan, 1959. 32(11): p. 1221-1226.
8. Deng, Y.H., et al., A drying‐free, water‐based process for fabricating mixed‐matrix membranes with outstanding pervaporation performance. Angewandte Chemie, 2016. 128(41): p. 12985-12988.
9. Lin, G.-S., et al., A high ZIF-8 loading PVA mixed matrix membrane on alumina hollow fiber with enhanced ethanol dehydration. Journal of Membrane Science, 2021. 621: p. 118935.
10. Graham, T., On the law of the diffusion of gases. Journal of Membrane Science, 1995. 100(1): p. 17-21.
11. Henley, E., N. Li, and R. Long, Membrane separation processes. Industrial & Engineering Chemistry, 1965. 57(3): p. 18-29.
12. Coleman, M. and W. Koros, Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications. Journal of Membrane Science, 1990. 50(3): p. 285-297.
13. Sawyer, L. and R. Jones, Observations on the structure of first generation polybenzimidazole reverse osmosis membranes. Journal of Membrane Science, 1984. 20(2): p. 147-166.
14. Bondar, V., B. Freeman, and I. Pinnau, Gas sorption and characterization of poly (ether‐b‐amide) segmented block copolymers. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(17): p. 2463-2475.
15. Bernardo, P., et al., Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Separation and Purification Technology, 2012. 97: p. 73-82.
16. Casadei, R., et al., Pebax® 2533/graphene oxide nanocomposite membranes for carbon capture. Membranes, 2020. 10(8): p. 188.
17. Lee, S., et al., Direct molecular interaction of CO2 with KTFSI dissolved in Pebax 2533 and their use in facilitated CO2 transport membranes. Journal of Membrane Science, 2018. 548: p. 358-362.
18. Nafisi, V. and M.-B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014. 459: p. 244-255.
19. Rezac, M.E., T. John, and P.H. Pfromm, Effect of copolymer composition on the solubility and diffusivity of water and methanol in a series of polyether amides. Journal of Applied Polymer Science, 1997. 65(10): p. 1983-1993.
20. Chui, S.S.-Y., et al., A chemically functionalizable nanoporous material [Cu3 (TMA) 2 (H2O) 3] n. Science, 1999. 283(5405): p. 1148-1150.
21. O'Neill, L.D., H. Zhang, and D. Bradshaw, Macro-/microporous MOF composite beads. Journal of Materials Chemistry, 2010. 20(27): p. 5720-5726.
22. Ma, X., et al., Efficient removal of low concentration methyl mercaptan by HKUST-1 membrane constructed on porous alumina granules. CrystEngComm, 2018. 20(4): p. 407-411.
23. Ge, L., et al., Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation. Journal of Materials Chemistry A, 2013. 1(21): p. 6350-6358.
24. Zornoza, B., et al., Combination of MOFs and zeolites for mixed‐matrix membranes. ChemPhysChem, 2011. 12(15): p. 2781-2785.
25. Fakoori, M., et al., Effect of Cu-MOFs incorporation on gas separation of Pebax thin film nanocomposite (TFN) membrane. Korean Journal of Chemical Engineering, 2021. 38(1): p. 121-128.
26. Zhang, Z., A. Fuoco, and G. He, Membranes for Gas Separation. 2021, MDPI. p. 755.
27. Chuah, C.Y., et al., Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation. Membranes, 2020. 10(4): p. 74.
28. Lin, Y., et al., Development of an HKUST-1 nanofiller-templated poly (ether sulfone) mixed matrix membrane for a highly efficient ultrafiltration process. ACS Applied Materials & Interfaces, 2019. 11(20): p. 18782-18796.
29. BX Chen, B.C., Influences of Defect Degree in Zirconium Metal-Organic Framework on Mixed Matrix Membrane Performance, in Chemical and Material Engineer 2021, 國立中央大學: Master's Thesis.
30. Yan, X., et al., Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous and Mesoporous Materials, 2014. 183: p. 69-73.
31. Yakovenko, A.A., et al., Generation and applications of structure envelopes for porous metal–organic frameworks. Journal of Applied Crystallography, 2013. 46(2): p. 346-353.
32. Sun, X., et al., Novel hierarchical Fe (III)-doped Cu-MOFs with enhanced adsorption of benzene vapor. Frontiers in Chemistry, 2019. 7: p. 652.
33. Mohanadas, D., T.B. Ravoof, and Y. Sulaiman, A fast switching electrochromic performance based on poly (3, 4-ethylenedioxythiophene)-reduced graphene oxide/metal-organic framework HKUST-1. Solar Energy Materials and Solar Cells, 2020. 214: p. 110596.
34. Kim, S.Y., Y. Cho, and S.W. Kang, Correlation between functional group and formation of nanoparticles in PEBAX/Ag salt/Al salt complexes for olefin separation. Polymers, 2020. 12(3): p. 667.
35. Yoon, S.-S., H.-K. Lee, and S.-R. Hong, CO2/N2 Gas Separation Using Pebax/ZIF-7—PSf Composite Membranes. Membranes, 2021. 11(9): p. 708.
36. Smith, A.L., The coblentz society desk book of infrared spectra. The Coblentz Society Desk Book of Infrared Spectra, 1982. 2.
37. 김지인, Structural effect of different Pebax/ZIF-8 MMMs on CO2 permeability. 2019, 서울대학교 대학원.
38. Bordiga, S., et al., Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Physical Chemistry Chemical Physics, 2007. 9(21): p. 2676-2685.
39. Al-Maythalony, B.A., et al., Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. Journal of the American Chemical Society, 2015. 137(5): p. 1754-1757.
40. Rui, Z., et al., Metal‐organic framework membrane process for high purity CO2 production. AIChE Journal, 2016. 62(11): p. 3836-3841.
41. Takahashi, S. and D. Paul, Gas permeation in poly (ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer, 2006. 47(21): p. 7519-7534.