| 研究生: |
楊承泰 Cheng-Tai Yang |
|---|---|
| 論文名稱: |
台灣周邊中尺度對流系統及綜觀環境特徵統計分析 |
| 指導教授: | 張偉裕 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 中尺度對流系統 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用2006至2020年中央氣象局QPESUMS資料,針對台灣地區中尺度對流系統(Mesoscale Convective System, MCS)進行辨識以及分析,探討在不同季節間MCS結構特性,包含面積、形狀、長短軸比、發展高度及強度等。以ECMWF ERA5再分析資料及板橋探空資料探討MCS發生時的綜觀環境及熱力條件變數。以JMA 颱風資料濾除受TC影響事件。分為五個季節:春季(3月~5月中)、梅雨季(5月中~6月中)、夏季(6月中~8月)、秋季(9月~11月)以及冬季(12月至隔年2月)進行MCS的探討。
研究結果發現,MCS發生在梅雨季的比例最高(31.5%),次高為春雨季(30.0%),最少的是冬季(7.0%)。在春季時,高層中緯度的西風帶的影響逐漸減小,MCS主要是來自於春雨或冷鋒事件,由低層的西南風與冬季季風輻合所形成,以北台灣為主。梅雨季為MCS最活躍以及強度最強的季節,MCS的環境與梅雨鋒面息息相關,有著高層分流、加深的中層槽線與低層噴流。夏季的熱力環境最好,但垂直風切弱,因此對流面積較梅雨季小,MCS環境受西南氣流以及副熱帶高壓影響,當高壓東退時,西南氣流增強,使MCS容易在台灣西南部生成。
秋季之後開始轉為冬季季風,MCS以東部、東南部為主。高層開始受到中緯度的西風帶的影響。由於冬季季風會帶來較為乾冷的空氣,因此MCS事件發生時,北風分量會減小,由東北風轉為東風甚至東南風(11月後尤為明顯),並開始有冷鋒訊號出現於台灣北部。冬季則接續秋季11月後的情形,MCS事件以台灣北部為主的冷鋒事件以及東部的線狀對流為主,但由於熱力條件較差,因此MCS在發生頻率、強度上皆較低。
This study uses CWB QPESUMS radar, rain gauge, sounding, and ECMWF reanalysis data to investigate (Mesoscale Convective Systems) MCS events and analyze their synoptical environment characteristics in the Taiwan area from 2006 to 2020. The selected MCSs of five seasons, namely Spring, Mei-yu, Summer, Autumn and Winter, were analyzed.
The results show the Mei-yu season has the most MCS events (31.5%), the second most is spring (30.0%), and the least is the winter season (7.0%). In spring, MCS mainly associated with cold frontal system and located in northern Taiwan. The environment shows the southwesterly wind converged with winter monsoon in the lower level. The MCS events of the Mei-yu season are the most active with deepest convections. The environment shows there are upper-level divergence, deeper mid-level trough, and low-level jet. The MCS are located around retire Taiwan. The thermal condition is the most unstable to convection in Summer, the vertical wind shear is the weakest. Thus, Summer has lesser total number and weaker MCS events than Mei-yu season. The MCS events are mostly located in southwestern Taiwan and triggered by the southwesterly monsoon.
The instability starts to decrease after the winter monsoon onset. MCS mainly located in eastern and southeastern Taiwan in Autumn. Because of the dry and cold winter monsoon flow, the northerly wind component will decrease when MCS occurs in Autumn, causing the northeasterly wind turn to easterly or even southeasterly wind (especially after November). In addition, MCS events caused by the cold frontal system become more frequent in northern Taiwan after November. In winter, the environment is similar to November. However, because of the unfavorable convection condition, the frequency and convective strength are the lowest.
郭勉之與林松錦,2001:「東亞夏季季風肇始定義與季風肇始時期的環流特徵」大氣科學,29,141-170
蔡宗樺,2012:「利用WRF 模式探討台灣東部海上對流線之個案研究」,國立中央大學碩士論文,104頁
陳孟詩,2012:「臺灣梅雨期開始及乾溼之指標研究」,氣象學報,48,39-52
葉玉婕,2021:「統計分析2008年西南氣流實驗期間對流系統的雙偏即化雷達拉格朗日特徵」,國立中央大學碩士論文,103頁
吳冠伯,2019:「2015-2015年暖季弱綜觀環境下對流降水系統之特徵統計」,中國文化大學碩士論文,96頁
Paul Markowski and Yvette Richardson. Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 2013.
Chen, C.-S. and Chen, Y.-L., 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131(7), 1323– 1341.
Chien, F.-C., 2015: The role of southwesterly flow in MCS formation during a heavy rain event in Taiwan on 12–13 June 2005. Terr. Atmos. Oceanic Sci., 26, 411-429.
Chien, F.-C., and Y.-C. Chiu, 2019: A composite study of southwesterly flows and rainfall in Taiwan. J. Meteor. Soc. Japan, 97, 1023-1040.
Feng, Z., Houze, R. A., Leung, L. R., Song, F., Hardin, J. C., Wang, J., et al., 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32(21), 7303– 7328.
Guastini, C. T., and L. F. Bosart, 2016: Analysis of a progressive derecho climatology and associated formation environments. Mon. Wea. Rev., 144, 1363–1382.
Haberlie, A. M., and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 1591–1606.
Jian, H.-W.; Chen, W.-T.; Chen, P.-J.; Wu, C.-M., 2021: Rasmussen, K.L. The Synoptically-Influenced Extreme Precipitation Systems over Asian-Australian Monsoon Region Observed by TRMM Precipitation Radar. J. Meteorol. Soc. Jpn. Ser. II, 99, 269–285.
Ko, K. C. & Tzeng, Y. S., 2014: Characteristics of Summertime Circulation Patterns for Southern Taiwan’s Monsoon Rainfall from July to September. Terr. Atmos. Ocean. Sci. 24, 107–119.
Meng, Y.N.; Sun, J.H.; Zhang, Y.C.; Fu, S.M., 2021: A 10-Year Climatology of Mesoscale Convective Systems and Their Synoptic Circulations in the Southwest Mountain Area of China. J. Hydrometeorol., 22, 23–41.
Starzec, M., Homeyer, C. R., & Mullendore, G. L., 2017: Storm labeling in three dimensions (SL3D): A volumetric radar echo and dual-polarization updraft classification algorithm. Mon. Wea. Rev., 145(3), 1127– 1145.
Dixon, M., & Wiener, G., 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology.”, Journal of Atmospheric and Oceanic Technology, 10(6), 785-797.
Tu, C.-C., Chen, Y.-L., Chen, C.-S., Lin, P.-L., and Lin, P.-H., 2014: A comparison of two heavy rainfall events during the Terrain-influenced Monsoon Rainfall Experiment (TiMREX) 2008, Mon. Wea. Rev., 142, 2436–2463.
Wu, M. W., Wu, C.-C., Yen, T.-H., & Luo, Y. L., 2017: Synoptic analysis of extreme hourly precipitation in Taiwan during 2003–12. Mon. Wea. Rev., 145(12), 5123– 5140.
Yihui, D., and J. C. L. Chan., 2005: The East Asian Summer Monsoon: Overview. Meteorology and Atmospheric Physics, 89 (1), 117–142.
Chang, P.-L., P.-F. Lin, B. J.-D. Jou and J. Zhang, 2009: An Application of Reflectivity Climatology in Constructing Radar Hybrid Scans over Complex Terrain. J. Atmos. Oceanic Technol., 26, 1315-1327.