| 研究生: |
林忠逸 Chung-Yei Lin |
|---|---|
| 論文名稱: |
水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究 |
| 指導教授: |
王鯤生
Kuen-Sheng Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 261 |
| 中文關鍵詞: | 配比設計 、C-S-H膠體 、水化反應 、環保水泥 、水處理廢棄污泥 |
| 外文關鍵詞: | C-S-H gel, hydration, ecocement, sludge, raw meal |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以下水污泥、工業廢棄污泥、淨水污泥及煉鋼廢爐渣為水泥生料之主體,同時以水泥係數規範值為邊界條件,利用最佳配比策略編寫電腦配料程式,外添加適量石灰石進行配比設計,成功混配出兩系列六型別(分別命名ECOⅠ~ ECOⅥ型)環保水泥生料。另外為模擬實廠燒製水泥之流程,本研究利用導氣式焚化爐及高溫熔融爐(1400℃,6小時)於適當之操作條件下,燒製環保水泥熟料。再針對不同污泥(替代性生料)組成份上之差異針對燒成之環保水泥製成漿體,進行水化反應特性及工程材料特性之探討。研究除建立上下水污泥及工業污泥取代天然礦物摻配水泥生料之基本特性外,亦探討環保水泥之工程材料特性及水化反應行為,包括抗壓強度、膠體空間比、晶相物種組成份、水化程度及為結構變化等。
實驗結果顯示,以廢棄污泥及煉鋼廢爐渣取代天然礦物摻配水泥生料,其取代原料之比例可達20%,同時,燒製熟料之溶出(TCLP)試驗皆符合法規值,適合資源化應用。實驗所燒製之各組水泥熟料皆含有C2S、C3S、C3A及C4AF晶相物種。至於ECOⅢ型及ECOⅥ型環保水泥,因生料中含有較高比例之P2O5,熟料中C2S組成相以α-C2S之型態存在。ECOⅡ及ECOⅣ型環保水泥抗壓強度發展趨勢和OPC相似。ECOⅠ型環保水泥在養護初期抗壓強度發展較快,至養護晚期則趨於平緩。ECOⅤ型環保水泥在60及90天之養護晚期趨勢發展較為明顯。ECOⅢ型及ECOⅥ型環保水泥,直到90天之養護晚期其抗壓強度發展趨勢皆不佳。
由TG-DTA分析結果顯示,實驗所燒製之六型別環保水泥水化反應皆會生成CH及C-S-H膠體。由MIP分析結果顯示,實驗所燒製之各型別環保水泥漿體孔隙皆有隨水化齡期而緻密化之現象。由XRD分析結果顯示,各型別環保水泥漿體之C3S主峰,在水化晚期均有減少之趨勢,而C-S-H膠體亦可發現在晚期有些微增加之趨勢,觀察彼等趨勢之變異,可確認各型別環保水泥具有不同水化反應特性。以29Si為核種利用NMR技術,探討環保水泥漿體中矽酸鹽之變化情形,結果顯示,各型別環保水泥漿體之水化程度及聚矽陰離子長度皆有隨齡期增加而增加之趨勢。以SEM觀察環保水泥漿體水化產物之變化,結果顯示,隨著養護齡期之增加,環保水泥漿體水化反應所生成之C-S-H膠體逐漸向外成長並形成絨毛狀態,進而填充孔隙,提昇其抗壓強度。綜合上述結果,驗證出廢棄污泥及煉鋼廢爐渣具有取代天然礦物燒製環保水泥之潛力。
Six new types of hydraulic cements (referred to as ecocement. ECOI through ECOVI)have been developed by incorporating sludge ashes from primary sewage treatment plants and water purification plants, as well as waste from steel-works (ferrate) as partial replacements for clay, silica, alumina, and iron oxide in the raw cement meal. The recipes were formulated by solving a series of simultaneous equations, based on the boundary conditions defined by the compositional requirements of Ordinary Portaland Cement (OPC) and the chemical coefficients of the cement''s raw materials, including the hydralulic modulus (H.M.), silicate modulus(S.M.), iron modulus(I.M.), and lime saturation ratio(L.S.R). The raw meal was prepared for the pre-determined recipes by heating it to 1400℃for six hours during the clinkerization process, using a simulated incinerator and a smelter. The resultant clinkers were mixed with limestone and used to prepare the six types of ecocement.
In this study, the hydration characteristics of these ecocements and the energinnering properties of their mortars, including the compressive strength, gel pores variation, speciations, hydration degree at microstruct-
ures, were studied as compared to those of OPC.
Our results indicate that it is feasible to use sludge ashes and steel-making waste to replace, up to 20% of the mineral components of raw materials for cement (also referred to as raw meal). Furtthermore, all the tested clinkers met the TCLP (toxicity characteristic leaching procedure) requirements. The major components of the Portland cement composition,C3S(i.e.,3CaO.SiO2),C2S(i.e.,2CaO.SiO2),C3A(i.e.,3CaO.Al2O3), and C4AF(i.e., 4CaO.Al2O3.Fe2O3) were also found in the waste-derived clinkers. Of all six new types of cement, ECOII and ECO IV were closest to OPC type I in composition and compressive strength development; ECOI, showed early strength development and was similar to OPC type III. The remaining types of ecocements were not in the definate classification range. In general, clinker derived from ECOI showed early strength development, while those from ECOV displayed later strength development at 60-90 days. Those from ECOIII and ECOV underperformed in terms of compressive strength as compared to OPC.
All types of ecocement were confirmed to produce calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) during the hydration process, and their densification increased with the curing age. The major peaks of C3S were found to decrease with a slight increase of the C-S-H peaks at later stages of hydration, showing the various hydration degrees of the ecocements. The chemical of shift of the silicates, and the hydration degree caused an increase in the length of the C-S-H gel with curing age, and this was confirmed by 29Si NMR techniques.
The results reported here may be of importance in understanding and recycling sludge ashes and steel-making slag as constructional material.
1. Anatoly Gadayev,Boris Kodess”By-product materials in cement clinker manufacturing”, Cement and Concrete.Vol.29,,pp.187-191,1999.
2. A.Diouri , A.Boukhari , J.Aride , F.Puertas , T.Vazquez ”Stable Ca3SiO5 solid solution containing manganese and phosphorus” , Cement and Concrete Research vol.27 , No.8 , pp.1203-1212,1997.
3. Alleman. J.E. and Berman, N.A. , “Construcrtive Sludge Management: Biobrick” , J. Env. Eng. Div. , ASCE , 110(2) , pp.301-311,1984.
4. Bogue”The Chemistry of PORTLAND CEMENT”,2nd edition , Reinhold Publishing Co,pp.245-268,1999.
5. BOIKOVA,A.I.”Microscopic and X-RAY Study of Real Clinker Phases and Their Hydration Reactivity”,Proc.,18th Intl.Conf.Cement Microscopy,Houston,pp.453-548,1996
6. Bridle , T.R. , “Sludge Derived Oil:Wastewater Treatment Implication.” , Environ. Technol. Lett. , 3 , pp.151-156,1982.
7. Bhatty, J.I., and Reid, K.J , “Moderate Strength Concrete from Lightweight Sludge Ash Aggregates.” , Cement Composites and Lightewight Concrete ,vol11 , pp.179-187,1989.
8. Chiou-kuo Lin and Jong-Nan Chen,”An NMR,XRD and EDS study of solidification/stabilization of chromium with Portland cement andC3S”,Journal of Hazardous Materials,Vol.56,pp21-34,1997.
9. Chesener, W.H. , “Ash Utilization : An Overview of Engineering, Environmental, Economic and Institutional Issues” in Proceedings of the First International Conference on Municipal Solid Waste Combustor Ash Utilization , UAS, pp.1~14,1998.
10. Dent Glasser, L.S., “A Multi-Method Study if C3S Hydration”, Cement and Concrete Resrearch No.6, pp.733~740,1978.
11. D.Stephen,R.Mallmann,D.Knöfel,R.Härdtl “High instakes of Cr and Ni in clinker Part Ⅰ.Influence on burning process and formation of phases”,Cement and Concrete Research 29,pp.1949-1957,1999.
12. D.Stephan,H.Maleki,D.Knöfel,B.Eber,R.Härdtl”Influence of Cr,Ni,and Zn on the properties of pure clinker phases Part Ⅰ.C3S”, Cement and Concrete Research 29,pp.545-552,1999
13. D.Stephan,H.Maleki,D.Knöfel,B.Eber,R.Härdtl”Influence of Cr,Ni,and Zn on the properties of pure clinker phases Part Ⅱ.C3A and C4AF”, Cement and Concrete Research 29,pp.651-657,1999
14. Donald J. Lisk , “Compressive Strength of Cement Containing Ash from Municipal Refuse or Sewage Sludge Incinerators.” , Environmental Contamination and Toxicology , 42 , pp.540-543,1989.
15. Elins, B.V., Wilson, G.E. and Gersberg, R.M., “Complete Reclamation of Wastewater and Sludge.” , Water Sci. Tech. 1985 , 17 , pp.1453-1454.
16. Espinosa D.C.R.and Tenorio J.A.S. , “Laboratory study of galvanic sludge,s Influence on the clinkerization process”, Resources Conservation and Recycling Vo31 , pp.71~82,2000..
17. F.Goetz-Neunhoeffer and J. Neubauer,”Effects of raw meal substitution by sewage sludgeon OPC clinker studied”,Proceedings of the 20th international conference on cement,Mexico,pp138,1998.
18. Galandak, J. , and Racstain, M. , “Design Consideration for Pyrolysis of Municipal Sludge.” , J. Water Pollut. Control Fed. 51 , pp.370-377,1979.
19. Jan Maling and Della M. Roy,”The potential of fly ash for cement manufacture”,mercian Ceramic Bulletin,Vol.72,No.10,pp77-80,1993.
20. J.Payá*,M.V.Borrachero and J.Monzó”Properties of Portland Cement mortars incorporating high amount of oil-fuel ashes”,Waste Management 19,pp.1-7,1999.
21. James O. Eckert Jr., Oizhong Guo “Heavy metal in cement and cement kiln dust from kiln co-fired with hazardous waste-derived fuel :application of EPA leaching and acid-digestion procedures ,Journal of Hazardous Materials 59, PP.55-93,1998.
22. Jefferson Caponero,Jorge A.S. Tenório “Laboratory testing of the use of phosphate-coating sludge in cement clinker”,Resources Conservation Recycling 29 ,p169~p179,2000.
23. J. Monzo, J. Paya, M.V. Borrachero , E.Peris-Mora , “Mechanical Behavior of Mortars Containing Sewage Sludge Ash (SSA) and Portland Cement with Different Tricalcium Aluminate Content.” , Cement and Concrete Research vol.29 , pp.87-94,1999.
24. Joo-Hwa Tay , “Properties of Pulverized Sludge Ash Blended Cement.” , ACI Material Journal , pp.358-364,1987.
25. J. Monzo, J. Paya, M.V. Borrachero and A. Corcoles , “Use of Sewage Sludge Ash(SSA)-Cement Admixtures in Motars.”, Cement and Concrete Research , Vol. 26 , No.9, pp. 1389-1398,1996
26. Joo-Hwa Tay , “Sludge Ash as Filler for Portland Cement Concrete.” , Journal of Environmental Engineering,Vol.113 ,pp.345-351,1987.
27. Keiichi Miura ,Kurichiro Stao,Akira Yazawa,”Thermodynamic Consideration on the Klin Dust Generated from Eco-cement Production”,Materials Transactions,Vol.42,pp2523-2530,2001.
28. K.O.Ampadu and Kazuyuki Torri,”Characterization of ecocement pastes and mortars produced from incinerated ashes”, Cement and Concrete Research,Vol.31,pp431-436,2001.
29. Kurt E-Peray,Joseph J.Waddell原著”The Rotary Cement Kiln” ,程月初譯 ,pp.63-66,1975。
30. Kuhl ‚F.M.Lea ‚The Chemistry of Cement&Concrete ‚Edward Arnold Publishers ‚London ‚pp.334-335,1976.
31. Kakali G. and Parissakis G.,”Investigation of the effect on Zn Oxide on the formation of Portland cement clinker”, Cement and Concrete Reserch,Vol.25,pp79-85.,1995
32. Khanbilvardi, R. and Afshari, S. , “Sludge ash as fine aggregate for concrete mix.” , J. Env Eng. Div. , ASCE , 121(9), pp.633-638,1995.
33. Kirchner G.”Reaction in the clinker burning process” Zem. Kalk Gips 9/85,pp.535-539(1985)
34. M. A. Aziz and Lawrence C. C. Koe , “Potential Utilzation of Sewage Sludge.” , Water Science and Technology vol.22, pp.277-285,1990.
35. M.Murat and F. Sorrentino,”Effect of large additions of Cd.Pb.Cr.Zn,to cement raw meal on the composition and the properties of the clinker and the cement”,Cement and Concrete Research,Vol.26,pp377-385,1996.
36. Moises Frias ,M. Isabel and Sanchez de Rojas,”Total and soluble chromium and cobalt content in the main materials used in the cement”, Cement and Concrete Reserch,Vol.32,pp435-440,2002
37. Maneesh Singh and S.N. Upadhayay,”Prepartion of the rich cements using red mud”, Cement and Concrete Reserch,Vol.27,pp1037-1046,1997
38. M.L.D.Gougar,B.E.Scheetz and D.M.Roy ”Ettringite and C-S-H Portland cement for waste ion immobilization: a review ”,Waste Management.Vol.16,No.4,pp.295-303,1996.
39. .M.Murat,F.Sorrentino”Effect of large additions of Cd,Pb,Cr,Zn AND THE PROPERTIES OF THE CLINKER AND THE CEMENT”,Cement and Concrete Research,Vol.26,No.3, pp.377-385,1996.
40. M.Ichikawa and M.Kanaya “Effects of minor components and heating rates on the fine textrues of alite in portland cement clinker”,Cement and Concrete.Vol.27,No.7,pp.1123-1129,1997
41. Michael Anderson , R. Glynn Skerratt , Julian P. Thomas and Stephen D. Clay , “Case Study Involving Using Fluidised Bed Incinerator Sludge Ash as a Partial Clay Substitute in Brick Manufacture” , Wat. Sci. Tech. 34 , pp.507-515,1996.
42. N.KKatral ‚R.Parkash ‚S.C.Ahluwalia ‚G.Samuel ”Influence of titania on the formation of tricalcium silicate”‚Cement and Concrete Research 29 ‚pp.335-339,1999.
43. N.KKatral ‚S.C.Ahluwalia ‚Ram Parkash”Effect of TiO2 on the hydration of tricalcium silicate “‚Cement and Concrete Research 29‚pp.1851-1855,1999.
44. Older I,Jawed I.”Expansive reactions in concrete.” In: Skalny J,Mindess S, editors.Materials science of concrete,Vol 2.Am Cer Soc ;221-47,1991.
45. Onaka,“Sewage can smake Portland cement:a new technology for ultimate reuse of sewage sludge ”, Water Sci. Tech 41 , pp.93-98,2000.
46. OSBAECK,B.,”The Influence of Alkalies on the Strength Properties of
Portland Cement ”, Zement-Kalk-Gips , Vol.32,pp.72-77,1979
47. P.Arjunan , Michael R. Silsbee and Della M. Roy ,”Sulfoaluminate-belite cement rom low-calcium fly ash and sulfur-rich and other industrial by-products”,Cement and Concrete Research,Vol.29,pp1305-1311,1999.
48. P.Arjuan and Della M.Roy , “Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products”, Cement and Concrete Resrearch Vo29 , pp.1305~1311,1999.
49. Pinarli V. & Emre N.k., “Constructive Sludge Management-Reutilization of Municipal Sewage Sludge in Portland Cement Mortars.” , Environ. Tech. , 14 , pp.833-841,1994.
50. Remigius Egwuonwu Okoli, George Balafoutas, “Landfill Sealing Potentials of Bottom Ashes of Sludge Cakes”, Soil and Tillage Research Volume 46, p.307~341, 1998.
51. Remigius Egwuonwu Okoli, George Balafoutas, “Landfill Sealing Potentials of Bottom Ashes of Sludge Cakes”, Soil and Tillage Research , 46, p.307~341,1998.
52. Ryunosuke Kikuchi,“Recycling of municipal solid waste for cement production :pilot-scale test for transforming incineration ash of solid waste into cement clinker”, Resources Conservation and Recycling Vo31, pp.131-147,2001.
53. Slim, J.A. and Wakefield, R.W. , “The Utilization of Sewage Sludge in The Manufacture of Clay Bricks” , Water Sci. Tech. 17 , pp.197-202,1991
54. S.P. Pandey , R.L. Sharma , “The Influence of Mineral Additives on The Strength and Porosity of OPC Mortar.” , Cement and Concrete Research 30 , pp.19-23,2000.
55. Tay, J. H. and K. Y. Show, “Reuse of wasterwater Sludge in Manufacturing Non-conventional Construction Material- an Innovative Approach to Ultimate Sludge Disposal”, Water Science and Technology, Vol. 26, No. 5-6, pp. 1165-1174,1992a.
56. Tay, J. H. and K. Y. Show, “The Use of Lime-blended Sludge for Production of Cementitious Material”, Water Environment Research, Vol. 64, No. 1, pp. 6-12,1992b.
57. Tay, J. H. and K. Y. Show, “Use of Ash Derived from Oil-palm Waste Incineration as a Cement Replacement Material”, Resources, Conservation and Recycling, Vol. 13, No.2, pp. 27-36,1995.
58. Tay, J. H., “Bricks Manufactured from Sludge”, Journal of Environmental Engineering, Vol. 113, No. 2, pp. 33-47 ,1987.
59. Tay, J.H. and Show, K.Y. , “Properites of Cement Made from Sludge.” , J. Env. Eng. Iv. , ASCE , 117(2) , pp.236-246,1991.
60. Tay, J.H. and Show, K.Y. , “Resource Recovery of Sludge as a Building and Construction Material-A Future Trend in Sludge Management.” , Wat. Sci. Tech. , Vol.36 , No.11 , pp.259-266,1997.
61. Tay, J.H , “Sludge and Incimerator Residue as Building and Comstruction Materials.” , Proc. Interclean’84 Conf. , pp.252-261,1984.
62. Viktor Grilc, Pok Jersan, Minimisation and utilization of waste mineral sludge from sodium perborate production, Waste Management &Research, Vol. 20, pp.414-423,1999.
63. V.riganti and G.B. Odobez, “The use of industrial sludge as raw material in the cement industry”, Waste Management and Resrearch Vo4 , pp.293~302,1999.
64. Woon-Kwong Yip , “Aggregate Made from Incinerated Sludge Residue”, Journal of Materials in Civil Engineering Vol.2, No. 2 , pp.84~93,1990
65. WeisWeiler W.,Dallibor W.,and Luck M.P.”Lead and cadmium balances of a cement kiln plant with grate preheater operating with increase chloride input”Zem. Kalk Gips 11/87,pp.571-573(1987)
66. Wieslaw Kurdowski,”Role of delayed release of sulphates from clinker in DEF”, Cement and Concrete Research,Vol.32,pp401-407,2002.
67. Yip, W.K. and Tay, J.H. , “Aggregate Made from Incinerated Sludge Residue.” , J. Materials in Civ. Eng. . , ASCE , 2(2) , pp.84-93,1990.
68. 日本下水道實務研究會,「新下水道事業」,第6卷,1999。
69. 日本下水污泥資源利用協議會,「下水污泥之建設資材利用」,建設省都市局下水道部監修,1991。
70. 王惠康”ZnO對波特蘭水泥凝結與硬化之影響”,台泥技術,第三卷、第一期,p345
71. 王弟文,「下水污泥焚化灰製造發泡輕質混凝土之研究」,國立中央大學環境工程研究所碩士論文,2001。
72. 中國國家標準(CNS)彙編。
73. 中興顧問社,「全省工業區污水處理系統功能評估」,84年度經濟部工業局專案計畫執行結果報告,1995。
74. 台北市自來水事業處統計資料,1999。
75. 江舜元、許貫中,「以29Si NMR探討強塑劑對水泥水化行為之影響」,土木水利,第十卷,第二期, 1998。
76. 朱樹恭,「工業化學概論下冊」,台灣商務印書館股份有限公司,台北1990。
77. 赤津 健、門奈 良,”氧化錳對熟料礦物組成與水泥強度之影響”,日本水泥技術年報,第20回,pp.39-43,1966
78. 赤津 健、前田勝輔,”氧化錳對Ferrite固溶體之強度與其伸展性之影響”,日本水泥技術年報,第21回,pp.33-36,1967
79. 赤津 健”硝化亞鉛對卜特蘭水泥水和強度的影響”日本水泥技術年報第22回(1968) p47~p50
80. 赤津 健、前田勝輔、池田五十六 ” Cr2O3、 P2O5對卜特蘭水泥之水和強度的影響” , 日本水泥技術年報 , 第24回 , pp.33-36 , 1970
81. 林凱隆,「都市垃圾焚化溶渣粉體調製環保水泥之卜作嵐反應特性研究」,國立中央大學環境工程研究所博士論文,2002。
82. 林世強,「以生產環保水泥解決台灣垃圾焚化灰問題」,第十五屆環境規劃與管理研討會,2002。
83. 林世強,「以垃圾焚化灰為原料之環保水泥生產技術與物性探討」,第十七屆廢棄物處理研討會,2002。
84. 沈永年,「高性能混凝土水化作用機理之研究」,國立台灣科技大學營建工程所博士論文,1997年。.
85. 美國混凝土協會材料試驗(ASTM)彙編。
86. 依日光,「污泥處理工學」,復漢出版社,1999。
87. 黃兆龍,「混凝土性質與行為」,詹氏書局,1997。
88. 黃兆龍,「混凝土品質保證、檢驗與制度」, 詹氏書局,1997。
89. 黃尊謙,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,國立中央大學環境工程研究所碩士論文,2000。
90. 黃台琪,「國內污泥焚化處理現況與展望」,一九九九年廢水處理技術與管理制度國際研討會,1999。
91. 孫國鼎,「水庫淤泥及淨水污泥再利用製磚之研究」,國立交通大學環境工程研究所碩士論文,2001。
92. 康世芳,「淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水場可行性評估」,台北自來水事業處委託研究計劃研究報告書,2001。
93. 李宗彥,「都市垃圾焚化飛灰熔渣粉體對不同行型態水泥之卜作嵐反應行為」, 國立中央大學環境工程研究所碩士論文,2001。
94. 曾博榆,「都市垃圾焚化灰渣調質熔渣取代部分水泥之研究」,碩士論文 ,國立中央大學環境工程研究所碩士論文,2001。
95. 郭子豪,「經前處理焚化底灰作為水泥原料之研究」,國立成功大學資源工程研究所碩士論文,2001。
96. 歐陽嶠暉,「都市污水處理場之污泥處理與資源化再利用之研究」,內政部營建署委託研究計劃,1998。
97. 歐陽嶠暉,「台灣下水道發展策略」,台灣下水道協會,2001。
98. 歐陽嶠暉,「下水道工程學」,長松出版社,1995。
99. 謝素蘭,「以高壓及高溫燒結技術鑄造水泥.黏土及飛灰混合料組件之研究」國立台灣工業技術學院工程技術研究所營建工程技術組 ,1990。
100. 廉慧珍、童良,「建築材料物相研究基礎」,清華大學出版社,中華人民共和國,1995。
101. 彭耀南、林維明,「蒸汽催化水泥單礦物之水化機理」,博士論文,國立交通大學土木工程研究所,1997。
102. 謝匽雲,「淨水污泥/工業廢水污泥之燒結資源化研究」,國立台灣大學環境工程研究所碩士論文,2001。
103. 鄭宏德,「自來水淨水場脫水污泥資源再利用之可行性研究」,第十九屆自來水研究發表會論文集,pp.323-338,2002。
104. 鄭欽仁,下水污泥灰發泡混凝土之輕質化與隔熱特性研究,中央大學環境工程研究所碩士論文,2002。
105. 蔡樹鴻,「都市垃圾焚化灰渣資源化處理之基礎研究」,國立成功大學資源工程研究所碩士論文,1997。
106. 蔡攀鰲,「土木材料試驗」,三民書局,1986。
107. 劉澤融,「工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究」,國立中央大學環境工程研究所碩士論文, 2001。
108. 環保署事業廢棄物管制中心統計資料,1999。
109. 蘇俊賓,「焚化底灰作為水泥替代原料之可行性研究」,國立成功大學資源工程研究所碩士論文,2000。
110. 龔人俠「水泥化學概論」,1970。