跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐彥翔
Yan-Shiang Shiu
論文名稱: 以化學水浴法製備氧化鋅光電極薄膜之研究
Production of ZnO Photoelectrode Thin Film by Chemical Bath Deposition Method
指導教授: 洪勵吾
Lih-Wu Hourng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 80
中文關鍵詞: 化學水浴沉積法半導體薄膜光電流密度晶型結構
外文關鍵詞: water-splitting, photoelectrochemical, photoelectrode, crystal structure, Zinc Oxide
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討氧化鋅(ZnO)半導體薄膜改變氨水濃度、沉積溫度、
    熱處理氣氛及熱處理溫度,對薄膜成形性質、吸收率及光電流的影
    響。以化學水浴法沉積法(CBD)於ITO 導電玻璃基材上進行鍍膜,來
    製備光電極薄膜。利用光電化學原理於水溶液中吸收太陽能,並將其
    解離成氫氣應用於氫能發電系統上。
    本實驗探討不同氨水溶液濃度下對生成氧化鋅晶型結構之影
    響,並比較在不同的晶型結構下,其晶型結構對穿透光譜及光電流性
    質之影響。實驗結果發現,氨水濃度在1M、1.8M時,氧化鋅形成六
    角柱型粗短及細長之晶型結構,氨水濃度在1.7M時,氧化鋅形成花
    瓣狀之晶形結構。當其氨水濃度提升至10M時,而其氧化鋅半導體光
    電特性在無施加偏壓下光電流密度可達到約0.17mA/cm2。進一步改
    變沉積溫度、熱處理氣氛及熱處理溫度對薄膜沉積的影響;實驗結果
    顯示,沉積溫度90℃、真空氣氛熱處理500℃下,氧化鋅薄膜之成膜
    性質及吸收率最佳。
    實驗結果亦顯示氧化鋅摻雜鎳後,其能隙值、吸收率及光電特性
    的影響;在無施加偏壓下光電流密度約0.2mA/cm2。因此,化學水浴
    法製備氧化鋅光電極乃成本低廉且製程簡易之方式。
    關鍵字:半導體薄膜、化學水浴沉積法、晶型結構、光電流密度


    In this study, zinc oxide (ZnO) thin film are formed under different
    working parameters, and their absorption and photocurrent effect are
    analyzed. ZnO thin films are deposited on ITO conductive glass substrate
    by chemical bath deposition (CBD), which is one of the most promising
    technique owing to its large-scale, cost-effective, environmental-benign
    and low-temperature advantages. By photoelectrochemical water-splitting,
    ZnO thin film can be used to produce H2.
    Firstly, different concentrations of ammonia solution are adapted to
    form zinc oxide thin film, and the resulting crystal structures are
    compared. It shows that ZnO particles have short and long hexagonal
    cylinder shapes at [NH3]=1 and1.8. The short hexagonal cylinder shapes
    was further transformed to a flower-like structure as ammonia increases
    to [NH3]=1.7. Experiments show that the photocurrent density of ZnO
    photoelectrode is nearly 0.17 mA/cm2 at 0 bias. The best forming
    properties of ZnO film occurs at [NH3]=10.
    By doping Ni into ZnO the effects on energy gap, absorption and
    photocurrent density of ZnO thin film is investigated. Photocurrent
    density of ZnO film is nearly 0.2 mA/cm2 at 0 bias. Therefore, producing
    ZnO photoelectrode by chemical bath deposition is proved to be a
    low-cost and simple method.
    Keyword: Zinc Oxide; crystal structure; photoelectrode;
    photoelectrochemical; water-splitting

    摘要............................................................................................................. I Abstract ......................................................................................................II 誌謝...........................................................................................................III 目錄.......................................................................................................... IV 表目錄.....................................................................................................VII 圖目錄....................................................................................................VIII 符號說明.................................................................................................. XI 第一章 緒論...............................................................................................1 1.1 研究背景與動機...........................................................................1 1.2 太陽能產氫原理...........................................................................2 1.3 化學水浴沉積法原理...................................................................3 1.3.1 化學水浴法沉積氧化物之化學反應機制........................4 1.3.2 化學水浴法之薄膜成長機制.............................................5 1.3.3 薄膜沉積成長與溶解度之關係.........................................6 1.4 文獻回顧.......................................................................................7 1.4.1 化學水浴法文獻回顧.........................................................7 1.4.2 光觸媒文獻回顧.................................................................8 1.4.3 氧化鋅(ZnO)文獻回顧.......................................................9 1.5 研究動機與目的.........................................................................13 IV 第二章 實驗部分與研究方法................................................................15 2.1 實驗流程與參數設定.................................................................15 2.2 實驗藥品材料與實驗裝置........................................................15 2.2.1 實驗藥品...........................................................................15 2.2.2 實驗基材...........................................................................17 2.2.3 實驗設備...........................................................................17 2.2.4 實驗步驟...........................................................................19 2.2.4.1 基材裁切、清洗與組裝.........................................19 2.2.4.2 反應鍍液配製與鍍浴方法.....................................20 2.2.4.3 試片完成之後處理(電極封裝)..............................21 2.3 薄膜物性量測分析.....................................................................21 2.3.1 XRD (X-ray 繞射儀) ........................................................22 2.3.2 FE-SEM (場發掃描式電子顯微鏡)..................................23 2.3.3 UV-Visible (紫外/可見光光譜儀).....................................24 2.4 薄膜電性量測分析.....................................................................25 第三章 實驗結果與討論........................................................................27 3.1 不同錯合劑濃度對其晶形結構及成膜性質的影響.................28 3.2 沉積溫度對薄膜的影響............................................................31 3.3 不同氣氛熱處理對薄膜的影響................................................33 V 3.4 熱處理溫度對薄膜的影響........................................................34 3.5 摻雜鎳對氧化鋅薄膜的影響....................................................35 第四章 結論與未來展望........................................................................37 4.1 結論.............................................................................................37 4.2 未來展望.....................................................................................38 參考文獻...................................................................................................39 VI 表目錄 表 2-1 實驗參數設定..............................................................................45 表2-2 實驗藥品......................................................................................46 表3-1 實驗參數設定表..........................................................................47 表3-2 膜厚表..........................................................................................48 表3-3 摻雜鎳之實驗參數設定表..........................................................48 VII 圖目錄 圖 1-1 太陽能產氫原理圖[2] .................................................................49 圖1-2 化學水浴裝置圖[3] .....................................................................49 圖1-3 化學水浴成膜機制[10] ...............................................................50 圖1-4 薄膜成長機制[9] .........................................................................50 圖2-1 實驗流程規劃..............................................................................51 圖2-2 實驗步驟流程圖..........................................................................52 圖2-3 基材清洗流程圖..........................................................................53 圖2-4 X光粉末繞射(XRD)示意圖[40] ...............................................54 圖2-5 掃描式電子顯微鏡(SEM)示意圖[40] ........................................54 圖2-6 積分球示意圖[43] .......................................................................55 圖3-1 不同濃度下之晶形結構(沉積溫度90℃) ..................................56 圖3-2 濃度1.7M在不同倍率下之情形................................................57 圖3-3 晶形結構對結晶強度的影響......................................................58 圖3-4 晶形結構對穿透率的影響..........................................................58 圖3-5 晶形結構對反射率的影響..........................................................59 圖3-6 晶形結構對吸收率的影響..........................................................59 圖3-7 濃度對結晶強度的影響..............................................................60 圖3-8 不同濃度下對成膜性質的影響(沉積溫度90℃) ......................61 VIII 圖3-9 濃度對穿透率的影響..................................................................62 圖3-10 濃度對反射率的影響................................................................62 圖3-11 濃度對吸收率的影響................................................................63 圖3-12 濃度對光暗電流性質的影響....................................................63 圖3-13 沉積溫度對結晶強度的影響....................................................64 圖3-14 氧化鋅薄膜在不同沉積溫度下之情形([NH3]=10M) .............65 圖3-15 薄膜形成孔洞之情形(沉積溫度80℃) ....................................66 圖3-16 沉積溫度對穿透率的影響........................................................67 圖3-17 沉積溫度對反射率的影響........................................................67 圖3-18 沉積溫度對吸收率的影響........................................................68 圖3-19 沉積溫度對光暗電流性質的影響............................................68 圖3-20 不同沉積溫度之平帶電位........................................................69 圖3-21 熱處理氣氛對結晶強度的影響................................................69 圖3-22 熱處理氣氛對穿透率的影響....................................................70 圖3-23 熱處理氣氛對反射率的影響....................................................70 圖3-24 熱處理氣氛對吸收率的影響....................................................71 圖3-25 熱處理氣氛對能隙值的影響....................................................71 圖3-26 熱處理氣氛對光暗電流性質的影響........................................72 圖3-27 熱處理溫度對結晶強度的影響................................................72 IX 圖3-28 熱處理溫度對穿透率的影響....................................................73 圖3-29 熱處理溫度對反射率的影響....................................................73 圖3-30 熱處理溫度對吸收率的影響....................................................74 圖3-31 熱處理溫度對能隙值的影響....................................................74 圖3-32 熱處理溫度對光暗電流性質的影響........................................75 圖3-33 不同熱處理溫度之平帶電位....................................................75 圖3-34 摻雜鎳對結晶強度的影響........................................................76 圖3-35 有無摻雜鎳之表面形態([NH3]=10M,沉積溫度90℃) ...........77 圖3-36 摻雜鎳對穿透率的影響............................................................78 圖3-37 摻雜鎳對反射率的影響............................................................78 圖3-38 摻雜鎳對吸收率的影響............................................................79 圖3-39 摻雜鎳對能隙的影響................................................................79 圖3-40 摻雜鎳對光暗電流性質的影響................................................80

    [1] 產氫與儲氫技術 曲新生, 陳發林, 呂錫民著. 2007.09 五南圖書
    出版股份有限公司。
    [2] M. Grätzel, “Insight review articles: Photoelectrochemical cells,”
    NATURE, Vol. 414, pp. 15-11, (2001).
    [3] R.S. Mane and C.D. Lokhande, “Chemical deposition method for
    metal chalcogenide thin films,” Materials Chemistry and Physics,
    Vol. 65, pp. 1-31 (2000).
    [4] 方俊、王秀峰、程冰、繆凌波,微波輔助化學浴沉積法製備ZnO
    薄膜,電子元件與材料,第25卷,第10期,pp. 17-19 (2006)。
    [5] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,國立成
    功大學化學工程研究所碩士論文(2006)。
    [6] 王應名、張萌、徐鵬、劉洋文、李禾、徐飛,化學浴沉積法製備
    ZnS薄膜,南昌大學學報,第30卷,第3期,pp. 279-282 (2006)。
    [7] T. P. Niesen and M. R. D. Guire, “Review:deposition of ceramic thin
    films at low temperatures from aqueous solutions,” Solid State Ionics,
    Vol. 151, pp. 61-68 (2002).
    [8] T. P. Niesen and M. R. D. Guire, “Review:Deposition of ceramic thin
    films at low temperatures from aqueous solutions,” Journal of
    Electroceramics,Vol. 6, pp. 169-207 (2001).
    [9] H. Y. Xu, H. Wang, T. N. Jin and H. Yan, “Rapid fabrication of
    luminescent Eu:YVO4 films by microwave-assisted chemical solution
    39
    deposition,” Institute of Physics Publishing, Nanotechnology, Vol. 16,
    pp. 65-69 (2005).
    [10] H. Y. Xu, S. L. Xu, X. D. Li, H. Wang and H. Yan, “Chemical bath
    deposition of hausmannite Mn3O4 thin films,” Applied Surface
    Science, Vol. 252, pp. 4091-4096 (2006).
    [11] P. O’Brien and J. McAleese, “Developing an understanding of the
    processescontrolling the chemical bath deposition of ZnS and CdS,”
    J. Mater. Chem, Vol. 8, pp. 2309-2314 (1998).
    [12] P. O''Brien, T. Saeeda and J. Knowled, “Speciation and the nature of
    ZnO thin films from chemical bath deposition,” J. Muter. Chem.,
    Vol. 6, pp. 1135-1139 (1996).
    [13] T. Saeed and P. O’Brien, “Deposition and characterization of ZnO
    thin films grown by chemical bath deposition,” Thin Solid Films,
    Vol. 271, pp. 35-38 (1995).
    [14] 張振昌,化學水浴沉積法成長硫化鎘薄膜之研究,國立中山大
    學科學材料研究所碩士論文(2006)。
    [15] M. O. Lopez, A. A. Garcia, M. L. A. Aguilera and V. M. S.
    Resendiz, “Improved efficiency of the chemical bath deposition
    method during growth of ZnO thin films,” Materials Research
    Bulletin, Vol. 38, pp. 1241-1248 (2003).
    [16] 王毓國、陳錦山、駱榮富,酸鹼度對化學浴沉積法製備的氧化
    鋅透明導電薄膜特性之影響,逢甲大學材料科學與工程學系。
    http://ceramic.che.nthu.edu.tw/document/ceramic2007/PP/PP%2026
    .pdf
    40
    [17] A. Ennaoui, M. Weber, R. Scheer and H. J. Lewerenz,
    “Chemical-bath ZnO buffer layer for CuInS2 thin-film solar cells,”
    Solar Energy Materials and Solar Cells, Vol. 54, pp. 277-286 (1998).
    [18] P. Niesen and R. De Guire, “Review: deposition of ceramic thin
    films at low temperatures from aqueous solutions,” Solid State
    Ionics, Vol. 151, pp. 61-68 (2002).
    [19] T. Bak, J. Nowotny, M. Rekas and C.C. Sorrell,
    “Photo-electrochemical hydrogen generation from water using solar
    energy,” International Journal of Hydrogen Energy, Vol. 27, pp.
    991-1022 (2002).
    [20] K. S. Ahn, Y. Y., S. H. Lee, T. Deutsch, J. Turner, C. E. Tracy, C. L.
    Perkins, and M. Al-Jassim, “Photoelectrochemical properties of
    N-incorporated ZnO films deposited by reactive RF magnetron
    sputtering,” Journal of The Electrochemical Society, Vol. 154 (9), pp.
    B956-B959 (2007).
    [21] A. Kudo and Y. Miseki, “Heterogeneous photocatalyst materials for
    water splitting,” Chem. Soc. Rev., Vol. 38, pp. 253-278 (2009).
    [22] 圖解氫能源,市川 勝著;李漢庭譯 世茂出版有限公司,2009
    年8月。
    [23] A. Kudo and M. Sekizawa, “Photocatalytic H2 evolution under
    visible light irradiation on Ni-doped ZnS photocatalyst,” Chem.
    Commun., pp. 1371-1372 (2000).
    [24] H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu and D. Que, “Synthesis of
    flower-like ZnO nanostructures by an organic-free hydrothermal
    process,” Nanotechnology, Vol. 15, pp. 622-626 (2004).
    41
    [25] M. Guo, P. Diao, X. Wang and S. Cai, “The effect of hydrothermal
    growth temperature on preparation and photoelectrochemical
    performance of ZnO nanorod array films,” Journal of Solid State
    Chemistry, Vol. 178, pp. 3210-3215 (2005).
    [26] X. Gao, X. Li and W. Yu, “Flowerlike ZnO nanostructures via
    hexamethylenetetramine-assisted thermolysis of zincethylenediamine
    complex,” J. Phys. Chem. B, Vol. 109, pp.
    1155-1161 (2005).
    [27] J. Liu, X. Huang, Y. Li, J. Duan and H. Ai, “Large-scale synthesis of
    flower-like ZnO structures by a surfactant-free and low-temperature
    process,” Materials Chemistry and Physics, Vol. 98, pp. 523-527
    (2006).
    [28] J. Ouerfelli, M. Regragui, M. Morsli, G. Djeteli, K. Jondo, C. Amory,
    G. Tchangbedji, K. Napo and J. C. Bern`ede, “Properties of ZnO
    thin films deposited by chemical bath deposition and post annealed,”
    J. Phys. D: Appl. Phys., Vol. 39, pp. 1954-1959 (2006).
    [29] M. Caglar, Y. Caglar, and S. Ilican, “Electrical and optical properties
    of undoped and In-doped ZnO thin films,” Phys. Stat. Sol. (c) 4, No.
    3, pp. 1337-1340 (2007).
    [30] S. Ekambaram, Y. Iikubo and A. Kudo, “Combustion synthesis and
    photocatalytic properties of transition metal-incorporated ZnO,”
    Journal of Alloys and Compounds, Vol. 433, pp. 237-240 (2007).
    [31] Y. Masuda, N. Kinoshita and K. Koumoto, “Morphology control of
    ZnO crystalline particles in aqueous solution,” Electrochimica Acta,
    Vol. 53, pp. 171-174 (2007).
    [32] I.E. Paulauskas, J.E. Katz, G.E. Jellison Jr., N.S. Lewis and L.A.
    42
    Boatner, “Photoelectrochemical studies of semiconducting
    photoanodes for hydrogen production via water dissociation,” Thin
    Solid Films, Vol. 516, pp. 8175-8178 (2008).
    [33] K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. Yan, M. Al-Jassim
    and J. Turner, “Enhancement of photoelectrochemical response by
    aligned nanorods in ZnO thin films,” Journal of Power Sources, Vol.
    176, pp. 387-392 (2008).
    [34] J. Xie, P. Li, Y. Li, Y. Wang and Y. Wei, “Morphology control of
    ZnO particles via aqueous solution route at low temperature,”
    Materials Chemistry and Physics, Vol. 114, pp. 943-947 (2009).
    [35] L.L. Yang, Q.X. Zhao and Magnus Willander, “Size-controlled
    growth of well-aligned ZnO nanorod arrays with two-step chemical
    bath deposition method,” Journal of Alloys and Compounds, Vol.
    469, pp. 623-629 (2009).
    [36] M. Gupta, V. Sharma, J. Shrivastava, A. Solanki, A. P. Singh, V. R.
    Satsangi, S. Dass and R. Shrivastav, “Preparation and
    characterization of nanostructured ZnO thin films for
    photoelectrochemical splitting of water,” Bull. Mater. Sci., Vol. 32,
    No. 1, pp. 23-30, (2009).
    [37] S. M. Huang, Z. Q. Bian, J. B. Chu, Z. A. Wang, D. W. Zhang, X. D.
    Li, H. B. Zhu and Z. Sun, “One-step growth of structured ZnO thin
    films by chemical bath deposition in aqueous ammonia solution,” J.
    Phys. D: Appl. Phys., Vol. 42, pp. 055412 (2009).
    [38] S. Maji, P. Bhattacharyya, A. Sengupta, and H. Saha, “Growth and
    Characterization of Nano-Cups,Flowers and Nanorods of ZnO by
    Chemical Bath Deposition,” Adv. Sci. Lett., Vol. 3, pp. 154-160
    43
    (2010).
    [39] 超音波工學理論實務 賴耿陽編著 復漢出版社有限公司,民國
    87年9月。
    [40] 薄膜科技與應用 羅吉宗編著 全華圖書股份有限公司,2009年3
    月。
    [41] 博精儀器股份有限公司,儀器介紹,積分球量測原理圖。
    http://www.aandb.com.tw/images/interior_images/p04_images_all/u
    v_vis_lambda_35_0001_big_900_576.png
    [42] H. Yang , L. Guo, W. Yan and H. Liu, “A novel composite
    photocatalyst for water splitting hydrogen production,” Journal of
    Power Sources, Vol. 159, pp. 1305-1309 (2006).
    [43] S. Kumari, C. Tripathi, A. P. Singh, D. Chauhan, R. Shrivastav, S.
    Dass and V.R. Satsangi, “Characterization of Zn-doped hematite thin
    films for photoelectrochemical splitting of water,” Current Science,
    Vol. 91, pp. 1062-1064 (2006).
    [44] S. K. Mandal, A. K. Das and T. K. Nath, “Temperature dependence
    of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO
    nanoparticles,” Applied Physics Letters, Vol. 89, pp. 144105-144107
    (2006).
    [45] 張琪芬,利用化學水浴沉積法製作Ni-ZnO 光電極之研究,國立
    中央大學能源工程研究所碩士論文(2008).

    QR CODE
    :::