跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳謙雅
Chien-Ya Chen
論文名稱: 應用於染敏電池近紅外光環金屬釕錯合物的合成
指導教授: 吳春桂
Chun-Guey Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 110
中文關鍵詞: 釕金屬錯合物染料敏化太陽能電池近紅外光
外文關鍵詞: Ruthenium complex, Dye-sensitized solar cells, Near IR
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化太陽能電池(Dye sensitized solar cells, 簡稱DSCs)具有製程簡單、色彩多樣化及高效率的室內弱光發電特性等諸多優點而具有發展潛力。大部分光電轉換效率超過 10%的 DSCs 所使用的染料為釕金屬錯合物,其中多數染料的吸收波段不含近紅外光區,因此若是能增加染料在近紅外光區波段的吸收就有機會能使染料所敏化的元件有較高的光電轉換效率。本研究以先前本實驗室所開發的 DUY27染料之輔助配位基2-(5-(hexylthio)thieno[3,2-b]thiophen-2-yl)-4-(5-hexylthiophen-2-yl)pyridine (簡稱 LD7) 搭配吸收波段達近紅外光之N749 染料的固著配位基[2,2':6',2''-terpyridine]-4,4',4''-tricarboxylic acid (H3tctpy)合成出吸收波段達近紅外光且吸收係數幾乎在所有波段皆高於 N749 染料之CCY32染料。此外,參考專利JP2013178968A中染料結構設計出 CCY-Si-1,其中輔助配位基 diphenyl(thieno[3,2-b]thiophene)silane (簡稱 Fthp-3-Si-Ph2)藉由兩個苯環作為 donor 進一步增加矽原子的 σ-donating 能力,然而 Fthp-3-Si-Ph2兩配位原子間剛性併環上角度過大且受到一定程度立體障礙影響而難以與釕金屬形成錯合物。


    Dye sensitized solar cells (DSC) have lots of advantages such as simple manufacturing process, variety of colors and good conversion efficiency under dim-light condition. Most of dyes used in DSCs with the power conversion efficiencies over 10 % are ruthenium complexes. The majority of them do not absorb the light in the near-infrared region. Therefore, in this research, 2-(5-(hexylthio)thieno[3,2-b]thiophen-2-yl)-4-(5-hexythiophen-2-yl)pyridine (LD7) was synthesized to be as ancillary ligand, combining the [2,2':6',2''-terpyridine]-4,4',4''-tricarboxylic acid (H3tctpy) anchoring ligand to form CCY32 dye with the absorption extended to NIR-IR region. To extend the absorption of ruthenium complexes, cyclometalated ligand containing silicon as a coordinated site is another strategy. Therefore Fthp-3-Si-Ph2 ancillary ligand was designed and synthesis. Unfortunately, the angle on the rigid fused ring between the two ligand was not able to bond to the ruthenium metal ion .

    摘要.......................................................v Abstract................................................. vi 1-1、 前言.................................................1 1-2、 太陽能電池的發展與分類.................................1 1-3、 染料敏化太陽能電池的架構與工作原理......................2 1-3-1、染料敏化太陽能電池的架構..............................2 1-3-2、染料敏化太陽能電池的工作原理 .........................3 1-3-3、染料敏化太陽能電池於室內弱光環境有高的光電轉換效率......5 1-4、染料敏化太陽能電池種類..................................6 1-5、釕金屬錯合物染料(Ruthenium Metal Complex).............10 1-5-1、高效率釕金屬錯合物染料設計 ..........................10 1-5-2、具代表性釕金屬錯合物染料.............................12 1-5-3、釕金屬錯合物染料吸光範圍.............................14 1-6、使釕金屬錯合物染料吸收紅位移的設計......................17 1-6-1、釕金屬錯合物染料 N749 吸收可達近紅外光 ...............17 1-6-2、環金屬釕錯合物具有高的 HOMO 能階.....................18 1-6-3、環金屬釕錯合物 DUY24-DUY27 吸收較 N719 紅移..........21 1-6-4、含矽化合物作為配位基有好的電子 donating 能力..........22 1-6-5、含有矽配位基之釕金屬錯合物染料 ......................23 1-7、研究動機.............................................25 第二章、 實驗部分 .........................................26 2-1、實驗藥品.............................................26 2-2、產物之結構、簡稱與分子量...............................29 2-3、實驗步驟.............................................33 2-3-1、Et3tctpy 的合成 ...................................33 2-3-2、Ligand LD7 的合成..................................36 2-3-3、CCY32 的合成.......................................42 2-3-4、Fthp-3-Si-Ph2的合成 ...............................46 2-4、儀器分析與樣品製備....................................50 2-4-1、核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR)....50 2-4-2、紫外光/可見光吸收光譜儀 (Ultraviolet Visible Spectrophoto-meter, UV/Vis Spectrophotometer).............51 2-4-3、電化學分析儀 (Electrochemical Analyzer) ............53 2-4-4、熱重分析儀 (Thermogravimetric Analyzer).............54 第三章、 結果與討論 .......................................55 3-1、CCY32 染料 ..........................................55 3-1-1、CCY32 的光學性質....................................55 3-1-2、CCY32 的電化學性質..................................58 3-1-3、CCY32 染料分子理論計算之前置軌域電子雲分佈............61 3-2、配位基 Fthp-3-Si-Ph2 ................................64 3-2-1、配位基 Fthp-3-Si-Ph2的光學性質......................64 3-2-2、配位基 Fthp-3-Si-Ph2的電化學性質....................65 3-2-3、配位基 Fthp-3-Si-Ph2的熱穩定性質....................66 3-2-4、配位基 Fthp-3-Si-Ph2與釕金屬離子錯合反應之探討........67 第四章、 結論 .............................................71 參考文獻..................................................72 附錄......................................................77

    [1]M. Green, E. D. Dunlop, J. H. Ebinger, M. Yoshita, N. Kopidakis and X. Hao, “Solar cell efficiency tables (version 58)”, Prog. Photovolt. Res. Appl., 2021, 29, 657-667.
    [2] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, “Counter electrodes in dyesensitized solar cells”, Chem. Soc. Rev., 2017, 46, 5975-6023.
    [3] Y. L. Tung, Y. S. Wu and M. D. Lu, “ The applications and future of dye-sensitized solar cell in internet of things”, 工業材料雜誌, 2015, 345, 138-145.
    [4] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell”, Nature, 1976, 261, 402-403.
    [5] B. Regan and M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737-740.
    [6] S. Yun, P. D. Lund and A. Hinsch, “Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells”, Energy Environ. Sci. 2015, 8, 3495-3514.
    [7] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngocle, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, ̈ S. M. Nakeeruddin and M. Grätzel, “Highly efficient light-harvesting ̈ruthenium sensitizer for thin-film dye-sensitized solar cells.“, ACS Nano, 2009, 3, 3103-3109.
    [8] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, “Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes”, Chem. Commun., 2015, 51, 15894-15897.
    [9] S. Mathew, A. Yelia, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavemelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers” Nat. Chem., 2014, 6, 242-247.
    [10]W. Shockley and J. H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys., 1961, 32, 510-519.
    [11]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, “Dyesensitized solar cells”, Chem. Rev., 2010, 110, 6595-6663.
    [12]N. Vlachopoulos, P. Liska, J. Augustynski and M. Grätzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am.Chem. Soc., 1988, 110, 1216-1220.
    [13]M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2,2-bipyridyl-4,4'-dicarboxylate) ruthenium (II) chargetransfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes”, J. Am. Chem. Soc., 1993, 115, 6382-6390.
    [14]M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B, 2003, 707, 8981-8987.
    [15]T. Kinoshita, M. Otsubo, T. Ono and H. Segawa, "Enhancement of near-infrared singlet−triplet absorption of Ru (II) sensitizers for improving conversion efficiency of solar cells”, ACS Appl. Energy. Mater., 2021, 4, 7052-7063.
    [16]J. V. S. Krishna, D. Koteshwar, T. H. Chowdhury, S. P. Singh, I. Bedja, A. Islam and L. Giribabu, “Efficient near IR porphyrins containing a triphenylamine-substituted anthryl donating group for dye sensitized solar cells”, J. Mater. Chem. C, 2019, 7, 13594-13605.
    [17]Y. Jin, Z. Chen, S. Dong, N. Zheng, L. Ying, X. F. Jiang, F. Liu, F. Huang and Y. Cao, “A novel Naphtho[1,2-c:5,6-c′]Bis([1,2,5]Thiadiazole)- based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%”, Adv. Mater., 2016, 23, 9811-9818.
    [18]M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L.Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc., 2001, 123, 1613-1624.
    [19]R. Juwita, J. Y. Lin, S. J. Lin, Y. C. Liu, T. Y. Wu, Y. M. Feng, C. Y. Chen, H. H. G. Tsai and C. G. Wu, “Osmium sensitizer with enhanced spin–orbit coupling for panchromatic dye-sensitized solar cells”, J. Mater. Chem. A, 2020, 8, 12361-12369.
    [20]P. G. Bomben, B. D. Koivisto, C. P. Berlinguette, “Cyclometalated Ru complexes of type [RuII(N∧N)2(C∧N)]z physicochemical response to substituents installed on the anionic ligand”, Inorg. Chem., 2010, 49, 4960-4971.
    [21]M. Hussain, A. Islam, I. Bedja, R. K. Gupta, L. Han, A. El-Shafei, “A comparative study of Ru(II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be? ”, Phys. Chem. Chem. Phys., 2014, 16, 14874-14881.
    [22]K. C. D. Robson, P. G. Bomben and C. P. Berlinguette,
    “Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles”, Inorg. Chem., 2012, 41, 7814-7829.
    [23]T. D. Nguyen, Y. P. Lan and C. G. Wu, “High-efficiency
    cycloruthenated sensitizers for dye-sensitized solar cells”, Inorg. Chem., 2018, 57, 1527-1534.
    [24]Z. Benedek and T. Szilvási, “Can low-valent silicon compounds be better transition metal ligands than phosphines and NHCs?”, J. Am. Chem. Soc., 2001, 123, 1613-1624.
    [25]K. Sasaki, Y. Tani and K. Kobayashi, “Photoelectric converters, metal complex dyes, dye-adsorption liquid composition for dye-sensitized solar cells, and fabrication of converters and solar cells thereof”, JP 2013178968 A, 2013.
    [26]J. Husson, J. Dehaudt and L. Guyard, “Preparation of carboxylate derivatives of terpyridine via the furan pathway”, Nature Protocols, 2014, 9, 21-26.
    [27]A. Keerthi, C. An, M. Li, T. Marszalek, A. G. Ricciardulli, B. Radha, F. D. Alsewailem, K. Mullen and M. Baumgarten, “Dithieno[2,3-d;2’,3’-d]benzo[2,1-b;3,4-b‘]- dithiophene: a novel building-block for a planar copolymer”, Polym. Chem., 2016, 7, 1545-1548.
    [28]J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Phys. Stat. Sol., 1966, 15, 627-637.
    [29]E. A Davis and N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Philos. Mag., 1970, 22, 903-922.
    [30]L. G. Oktariza, B. Yuliarto, and Suyatman, “Performance of dye sensitized solar cells (DSSC) using Syngonium Podophyllum Schott as natural dye and counter electrode”, AIP Conference Proceedings, 2018, 020022, 1-5.

    QR CODE
    :::