| 研究生: |
江鴻志 Hung-chih Chiang |
|---|---|
| 論文名稱: |
結合X光乳房攝影之擴散光學 斷層影像重建 Image Reconstruction of Diffuse Optical Tomographic Images Incorporating X-ray Mammography |
| 指導教授: |
潘敏俊
Min-Chun Pan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 影像評估 、正則化反算 、雙模影像 、擴散光學斷層掃描 |
| 外文關鍵詞: | regularization of inverse reconstruction, dual-modality imaging, diffuse optical tomography, quantitative evaluation of image quality |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對應用於乳癌診斷之擴散光學斷層掃描系統,發展組織光學係數影像重建
演算法,並藉由乳房攝影之組織結構影像訊息,提昇光學係數影像之解析度。以擴散方
程式為模型,將演算法分為前向計算與反向重建二階段。其中,於前向計算使用有限元
素法求解擴散方程式,以獲得所需位置之理論光強度;於反向重建使用空間映射正則化
反算程序,帶入校正後之實測光強度,再經疊代最小化理論與實測光強度之差異,求得
光學係數之變化量。藉由設計不同型態之腫瘤假體案例,經數值模擬與假體實驗,驗證
本研究檢知腫瘤對比度、大小及位置等特性之能力,並以均方誤差、一維剖面曲線及解
析度分析,量化評估影像品質。從研究中得知,使用Tikhonov 正則化方法且使用對比
度高於背景之初始條件,可得較佳之影像品質。為助於後續之臨床相關研究,應發展估
計整體光學特性之方法,給定合理之初始條件,伴隨標準假體之研究,以協助光學特性
估計及量測系統特性校正。
This thesis aims to develop an improved image reconstruction algorithm, a dual-modality
scheme, for diffuse optical tomography (DOT) by employing the spatial information of X-ray
mammography. The conventional image reconstruction algorithm of DOT based on the
diffusion equation involves both the forward computation and the regularization of inverse
reconstruction. The forward computation uses finite element method (FEM) for solving
diffusion equation to evaluate the distribution of transmitted light on the basis of the light
source and presumed parameters of the object. The regularization of inverse reconstruction,
here, uses the structural information obtained from x-ray mammography to reconstruct the
distribution of the optical properties of the object from measured data sets. The improved
algorithm is validated using different designated cases including various size, contrast and
location of inclusions to background. As a comparison, both simulation data and phantom
experimental data are employed to reconstruct functional optical-coefficient images. Besides,
the errors of all reconstruction images were quantitatively evaluated by using a mean square
error (MSE). Furthermore, we also use a set of measures on the quantitative evaluation for a
range of resolutions including size, contrast, and location, which provide a comparable
estimate to the visual quality. These results show that the use of Tikhonov regularization
method and a higher initial contrast can provide a better quality of image reconstruction.
[1] Humphrey, L. L., Helfand, M., Chan, B. K. S. and Woolf S. H., “Breast cancer screening:a summary of the evidence for the U.S. Preventive Services Task Force,” Ann Intern
Med, Vol. 137, No. 5, pp. 347-367 (2002).
[2] Martini, Bartholomew, ESSENTIALS of ANATOMY & PHYSIOLOGY 2/e,林自勇等
譯,初版,解剖生理學,全威圖書,台北縣五股鄉,2003/09。
[3] Woodard, H. Q. and White, D. R., “The composition of body tissues,” The British
Journal of Radiology, Vol.59, pp.1209-1219 (1986).
[4] Das, B. B., Liu, Feng. and Alfano, R. R., “Time-resolved fluorescence and photon
migration studies in biomedical and model random media,” Rep. Prog. Phys., Vol. 60, pp.
227-292 (1997).
[5] Henyey, L. G. and Greenstein, J. L., “Diffuse radiation in the galaxy,” Astrophysical
Journal , Vol.93, pp.70-83 (1941).
[6] Tromberg, B. J., Cerussi, A. E., Jakubowski, D., Shah, N., Bevilacqua, F., Berger, A. J.,
Butler, J. and Holcombe, R. F., “Functional diffuse optical spectroscopy of human breast
tissue,” The 14th Annual Meeting of the IEEE, Vol. 1, pp. 259-260, 2001/01.
[7] Schmidt, F. E. W., “Development of a Time-Resolved Optical Tomography System for
Neonatal Brain Imaging,” Doctor of Philosophy, University of London, 1999/11.
[8] Ntziachristos, V., Yodh, A. G., Schnall, M. and Chance, B., “Concurrent MRI and
diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Nat.
Acad. Sci., Vol. 97, No. 6, pp.2767-2772 (2000).
[9] Gulsen, G., Birgul, O., Unlu, M. B., Shafiiha, R. and Nalcioglu, O., “Combined diffuse
optical tomography (DOT) and MRI system for cancer imaging in small animals,”
Technology in Cancer Research & Treatment, Vol. 5, No. 4, pp. 351-363 (2006).
[10] Srinivasan, S., Pogue, B. W., Carpenter, C., Jiang, S., Wells, W. A., Poplack, S. P.,
Kaufman, P. A. and Paulsen, K. D., “Developments in quantitative oxygen-saturation
imaging of breast tissue in vivo using multispectral near-infrared tomography,” Antioxid.
Redox Sig., Vol. 9, No. 8, pp. 1143-1156 (2007).
[11] Chen, N. G., Guo, P., Yan, S., Piao, D. and Zhu, Q., “Simultaneous near-infrared
diffusive light and ultrasound imaging,” Applied Optics, Vol. 40, No. 34, pp. 6367-6380
(2001).
[12] Zhu, Q., Huang, M., Chen, N. G., Zarfos, K., Jagjivan, B., Kane, M., Hedge, P. and
Kurtzman, S. H., “Ultrasound-Guided Optical Tomographic Imaging of Malignant and
Benign Breast Lesions: Initial Clinical Results of 19 Cases,” Neoplasia, Vol. 5, No. 5, pp.
379-388 (2003).
[13] Zhu, Q., Xu, C., Guo, P., Aguirre, A., Yuan, B., Huang, F., Castilo, D., Gamelin,
J.,Tannenbaum, S., Kane, M., Hegde, P. and Kurtzman, S., “Optimal Probing of Optical
Contrast of Breast Lesions of Different Size Located at Different Depths by US
Localization,” Technology in Cancer Research & Treatment, Vol. 5, No. 4, pp. 365-380
(2006).
[14] Zhang, Q., Brukilacchio, T. J., Li, A., Stott, J. J., Chaves, T., Hillman, E., Wu, T.,
Chorlton, M., Rafferty, E., Moore, R. H., Kopans, D. B. and Boas, D. A., 2005,
“Coregistered tomographic X-ray and optical breast imaging:Initial results,” Journal of
Biomedical Optics, Vol. 10, No.2, pp. 024033:1-024033:9 (2005).
[15] O’Leary, M. A., “Imaging with Diffuse Photon Density Waves,” Doctor of Philosophy,
University of Pennsylvania, 1996.
[16] Fang, Q., Carp, S. A., Selb, J., Boverman, G., Zhang, Q., Kopans, D. B., Moore, R. H.,
Miller, E. L., Brooks, D. H. and Boas, D. A., “Combined Optical Imaging and
Mammography of the Healthy Breast: Optical Contrast Derived From Breast Structure
and Compression, ” IEEE Transactions on Medical Imaging, Vol. 28, No. 1, pp. 30-42
(2009).
[17] 台灣平面顯示器材料與元件產業協會(TDMDA):常用光學名詞定義。取自
http://group.ednchina.com/Upload/2007/8/8/8d8e5ebe-23ab-467e-b996-605b8f6e451
f.pdf
[18] Yalavarthy, P. K., Pogue, B. W., Dehghani, H. and Paulsen, K. D., “Weight-matrix
structured regularization provides optimal generalized least-squares estimate in diffuse
optical tomography,” Med. Phys., Vol. 34, No. 6, pp. 2085-2098 (2007).
[19] Patterson, M. S., Chance, B. and Wilson, B. C., “Time resolved reflectance and
transmittance for the non-invasive measurement of tissue optical properties,” Applied
Optics, Vol. 28, No. 12, pp. 2331-2336 (1989).
[20] Paulsen, K. D. and Jiang, H., “ Spatially varying optical property reconstruction using a
finite element diffusion equation approximation,” Med. Phys., Vol.22, No.6, pp.691-701
(1995).
[21] Arridge, S. R., Schweiger, M., Hiraoka, M. and Delpy, D. T., “ A finite element approach
for modeling photon transport in tissue, ” Med. Phys., Vol.20, No.2, pp.299-309 (1993).
[22] Farrell, T. J., Patterson, M. S. and Wilson, B. C., “A diffusion theory model of spatially
resolved, steady-state diffuse reflectance for the noninvasive determination of tissue
optical properties in vivo, ” Med. Phys., Vol.19, No.4, pp.879-888 (1992).
[23] Egan, W. G. and Hilgenman, T. W. “Optical Properties of Inhomogeneous Materials.
Applications to Geology, Astronomy, Chemistry, and Engineering.” Academic Press.,
New York (1979).
[24] McBride, T. O., “Spectroscopic Reconstructed Near Infrared Tomographic Imaging for
Breast Cancer Diagnosis,” Doctor of Philosophy, Thayer School of Engineering
Dartmouth College, 2001.
[25] Brooksby, B., Jiang, S., Dehghani, H., Pogue, B. W., Paulsen, K. D., Weaver, J., Kogel,
C. and Poplack, S. P., “Combining near-infrared tomography and magnetic resonance
imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization
to incorporate magnetic resonance structure, ” Journal of Biomedical Optics, Vol.10,
No.5, pp. 051504:1-051504:10 (2005).
[26] Pouge, B. W. and Patterson, M. S., “Review of tissue simulating phantoms for optical
spectroscopy, imaging and dosimetry, ” Journal of Biomedical Optics, Vol.11, No.4, pp.
041102:1-041102:16 (2006).
[27] Swartling, J., Dam, J. S. and Andersson-Engels, S., “Comparison of spatially and
temporally resolved diffuse-reflectance measurement systems for determination of
biomedical optical properties, ” Applied Optics, Vol.42, No.22, pp. 4612-4620 (2003).
[28] Chen, C. H., “Design/Implementation and Verification of NIR Electro-optical Measuring
System for Medical Application, ” Master Thesis, National Central University, 2005.
[29] Valery, Tuchin, TISSUE OPTICS:Light Scattering Methods and Instruments for Medical
Diagnosis, 2nd Edition, SPIE, Bellingham, Washington USA, 2007.
[30] Arridge, S. R. and Lionheart W. R. B., “Nonuniqueness in diffusion-based optical
tomography, ” Optics Letters, Vol. 23, No. 11, pp. 882-884 (1998).
[31] Pan, M. C., Chen, C. H., Chen, L. Y., Pan, M. C. and Shyr, Y. M., “Highly resolved
diffuse optical tomography:a systematic approach using high-pass filtering for
value-preserved images, ” Journal of Biomedical Optics, Vol. 13, No. 2, pp.
024022:1-024022:14 (2008).