跳到主要內容

簡易檢索 / 詳目顯示

研究生: 巫明帆
Ming-Fan Wu
論文名稱: 球對稱時空的準局域能量
Quasi-local Energy for Spherically Symmetric Spacetimes
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 99
語文別: 英文
論文頁數: 78
中文關鍵詞: 參考系位移向量準局域能量哈米爾頓
外文關鍵詞: reference, displacement vector, quasi-local energy, Hamiltonian
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出兩種互補的方法來決定哈米爾頓邊界項準局域能量表達式中的參考系,
    並且實際應用於球對稱時空。我們一方面對能量取極值以決定參考系,稱之為能
    量極值法;另一方面,我們也可以直接在邊界上要求兩組標架相等進而決定參考
    系,稱之為標架法,兩種方法都給出合理的結果。如果我們直接對能量取極值而
    不要求任何額外的限制條件,稱之為能量極值法一,得到的能量可以是正數也可
    以是零,甚至是負數。如果在某些額外的限制條件之下對能量取極值,稱之為能
    量極值法二,得到的能量則都是非負數的。另外,利用標架法且要求位移向量是
    參考空間的Killing 向量,我們得到和能量極值法一相同的結果;如果要求邊界上
    的二維面積元沿著位移向量的方向變化量相等,則得到的結果和能量極值法二相
    同,並且符合準局域能量一般性的要求,特別是能量必須是非負的,若且唯若時
    空是閔氏時空的時候能量是零。由能量極值法,我們了解使得能量得到極值的參
    考系在邊界上是四維等度規的;而由標架法我們發現,在邊界上四維等度規的參
    考系給出能量極值,因此,我們稱這兩種方法為互補的。


    We present two complementary approaches for determining the reference for the co-
    variant Hamiltonian boundary term quasi-local energy and test them on spherically
    symmetric spacetimes. On the one hand, we extremize the energy in two ways, which
    we call energy-extremization programs A and B. Both programs produce reasonable
    results that allow us to discuss energies measured by diRerent observers. We show
    that the energies produced by program A can be positive, zero, or even negative,
    while in program B they are always non-negative. On the other hand, we match the
    orthonormal frames of the dynamic and the reference spacetimes right on the two-
    sphere boundary. If we further require that the reference displacement vector to be
    the timelike Killing vector, the result is the same as program A. If, instead, we require
    that the Lie derivatives of the two-area along the displacement vector in both the dy-
    namic and reference spacetimes are the same, the result is the same as program B,
    which satis¯es the usual criteria. In particular, the energies are non-negative and van-
    ish only for Minkowski (or anti-de Sitter) spacetime. So by studying the spherically
    symmetric spacetimes, both static and dynamic, we learn that the references deter-
    mined by our energy extremization programs are those which isometrically match
    the dynamic spacetimes on the boundary. And the energies determined by isometric
    matching approach are actually the extremum measured by the associated observers.

    1 Introduction 1 2 The Hamiltonian Formulation 5 2.1 First Order Langrangian 5 2.2 Local Translation Invariance 6 2.3 The Hamiltonian Formulation 7 2.4 Re¯ned Boundary Terms 9 2.5 Application to Einstein''s Gravity Theory 12 3 Quasi-local Energy for Static Spherically Symmetric Spacetimes 14 3.1 Energy Extremization Program A 14 3.2 Energy Measured by Various Observers 21 3.3 Observer Adapted Coordinates 25 3.4 Energy Extremization Program B 27 3.5 An Alternative Approach 31 3.6 Conclusion 35 4 Quasi-local Energy for Dynamic Spherically Symmetric Spacetimes 37 4.1 Energy Extremization Program A 37 4.2 Energy Extremization Program B 44 4.3 An Alternative Approach 48 4.4 Conclusion 51 5 Concluding Discussion 52 A Review of DiRerential Forms 55 B Variational Principles with DiRerential Forms 60 C Geometry in Exterior Covariant DiRerential Forms 66 D Explicit Calculations of Quasi-local Energies 69 Bibliography 74

    [1] A. Trautman, in Gravitation: an Introduction to current research, ed. L. Witten
    (Wiley, New York, 1958).
    [2] A. Papapetrou, Einstein''s Theory Of Gravitation And Flat Space," Proc. Roy.
    Irish Acad. (Sect. A) 52A, 11 (1948).
    [3] P. G. Bergmann and R. Thomson, Spin And Angular Momentum In General
    Relativity," Phys. Rev. 89, 400 (1953).
    [4] C. M¿ller, Ann. Phys. 4, 347 (1958).
    [5] J. N. Goldberg, Conservation Laws in General Relativity," Phys. Rev. 111, 315
    (1958).
    [6] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields 2nd ed.
    (Addison-Wesley, Reading, MA, 1973).
    [7] S. Weinberg, Gravitation and Cosmology, (Wiley, New York, 1972).
    [8] C. W. Misner, K. Thorne and J. A. Wheeler, Gravitation, (Freeman, San Fran-
    cisco, 1973).
    [9] R. Penrose, Quasilocal mass and angular momentum in general relativity," Proc.
    Roy. Soc. Lond. A 381, 53 (1982).
    [10] L. B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in
    GR: A Review Article," Living Rev. Rel. 7 (2004) 4.
    [11] S. Hawking, Gravitational radiation in an expanding universe," J. Math. Phys.
    9, 598 (1968).
    [12] J. Katz, A note on Komar''s anomalous factor," Class. Quant. Grav. 2, 423
    (1985).
    [13] J. Katz and A. Ori, Localisation of ¯eld energy," Class. Quant. Grav. 7, 787
    (1990).
    [14] J. Katz, D. Lynden-Bell and J. Bicak, Gravitational energy in stationary space-
    times," Class. Quant. Grav. 23, 7111 (2006) [arXiv:gr-qc/0610052].
    [15] J. Jezierski and J. Kijowski, The localization of energy in gauge ¯eld theories
    and in linear gravitation," Gen. Rel. Grav. 22, 1283 (1990).
    [16] A. J. Dougan and L. J. Mason, Quasilocal mass constructions with positive
    energy," Phys. Rev. Lett. 67, 2119 (1991).
    [17] G. Bergqvist, Positivity and de¯nitions of mass (general relativity)," Class.
    Quant. Grav. 9, 1917 (1992).
    [18] J. M. Nester and R. S. Tung, A quadratic spinor Lagrangian for general rela-
    tivity," Gen. Rel. Grav. 27, 115 (1995) [arXiv:gr-qc/9407004].
    [19] R. S. Tung and T. Jacobson, Spinor one forms as gravitational potentials,"
    Class. Quant. Grav. 12, L51 (1995) [arXiv:gr-qc/9502037].
    [20] D. C. Robinson, Spinor-valued forms and a variational principle for Einstein''s
    vacuum equations," Class. Quant. Grav. 13, 307 (1996).
    [21] S. A. Hayward, Quasilocal gravitational energy," Phys. Rev. D 49, 831 (1994)
    [arXiv:gr-qc/9303030].
    [22] J. D. Brown and J. W. . York, Quasilocal energy and conserved charges de-
    rived from the gravitational action," Phys. Rev. D 47, 1407 (1993) [arXiv:gr-
    qc/9209012].
    [23] S. Lau, Canonical variables and quasilocal energy in general relativity," Class.
    Quant. Grav. 10, 2379 (1993) [arXiv:gr-qc/9307026].
    [24] G. Bergqvist, Quasilocal mass for event horizons," Class. Quant. Grav. 9, 1753
    (1992).
    [25] J. M. Nester, A covariant Hamiltonian for gravity theories," Mod. Phys. Lett.
    A 29 (1991) 2655.
    [26] D. R. Brill and S. Deser, Variational methods and positive energy in general
    relativity" Ann. Phys. (N.Y.) 50 (1968) 548.
    [27] R. Schoen and S. T. Yau, Positivity of the total mass of a general space-time,"
    Phys. Rev. Lett. 43 (1979) 1457.
    [28] E. Witten, A simple proof of the positive energy theorem," Commun. Math.
    Phys. 80 (1981) 381.
    [29] C. C. Liu and S. T. Yau, New de¯nition of quasilocal mass and its positivity,"
    Phys. Rev. Lett. 90 (2003) 231102. [arXiv:gr-qc/0303019].
    [30] C.-C. M. Liu and S. T. Yau, Positivity of quasi-local mass II," J. Amer. Math.
    Soc. 19 (2006) 181. [math.DG/0412292v2].
    [31] C. M. Chen, J. M. Nester and R. S. Tung, Quasilocal energy momentum for
    gravity theories," Phys. Lett. A 203 (1995) 5. [arXiv:gr-qc/9411048].
    [32] C. M. Chen and J. M. Nester, Quasilocal quantities for GR and other gravity
    theories," Class. Quant. Grav. 16 (1999) 1279. [arXiv:gr-qc/9809020].
    [33] C. C. Chang, J. M. Nester and C. M. Chen, Pseudotensors and quasilocal
    gravitational energy-momentum," Phys. Rev. Lett. 83 (1999) 1897. [arXiv:gr-
    qc/9809040].
    [34] C. M. Chen and J. M. Nester, A symplectic Hamiltonian derivation of quasilocal
    energy-momentum for GR," Grav. Cosmol. 6 (2000) 257. [arXiv:gr-qc/0001088].
    [35] C. M. Chen, J. M. Nester and R. S. Tung, The Hamiltonian boundary term and
    quasi-local energy °ux," Phys. Rev. D 72 (2005) 104020. [arXiv:gr-qc/0508026].
    [36] S. C. Anco and R. S. Tung, Symplectic structure of general relativity for spa-
    tially bounded spacetime regions. I: Boundary conditions," J. Math. Phys. 43
    (2002) 5531. [arXiv:gr-qc/0109013].
    [37] S. C. Anco and R. S. Tung, Symplectic structure of general relativity for spa-
    tially bounded spacetime regions. II: Properties and examples," J. Math. Phys.
    43 (2002) 3984. [arXiv:gr-qc/0109014].
    [38] R. Arnowitt, S. Deser, C. W. Misner, The Dynamics of General Relativity" in:
    Gravitation: An Introduction to Current Research, ed L. Witten (Wiley, New
    York, 1962) [arXiv:gr-qc/0405109].
    [39] K. Kucha·r, Dynamics of tensor ¯elds in hyperspace. III", J. Math. Phys. 17,
    801{820 (1976).
    [40] J. M. Nester, General pseudotensors and quasilocal quantities", Class. Quantum
    Grav. 21, S261{S280 (2004).
    [41] J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories,
    (Lecture Notes in Physics 107, Springer-Verlag, Berlin, 1979).
    [42] M. T. Wang and S. T. Yau, Quasilocal mass in general relativity," Phys. Rev.
    Lett. 102 (2009) 021101. [arXiv:0804.1174 [gr-qc]].
    [43] M. Blau and B. Rollier, Brown-York energy and radial geodesics," Class. Quant.
    Grav. 25 (2008) 105004. [arXiv:0708.0321 [gr-qc]].
    [44] P. P. Yu and R. R. Caldwell, Observer dependence of the quasi-local energy
    and momentum in Schwarzschild space-time," Gen. Rel. Grav. 41 (2009) 559.
    [arXiv:0801.3683 [gr-qc]].
    [45] J. M. Nester, L. L. So and T. Vargas, On the energy of homogeneous cosmolo-
    gies," Phys. Rev. D 78 (2008) 044035. [arXiv:0803.0181 [astro-ph]].
    [46] J. L. Liu, On quasi-local energy and the choice of reference", MSc. Thesis,
    National Central University, 2007.
    [47] A. P. Lundgren, B. S. Schmekel and J. W. York, Self-renormalization of the clas-
    sical quasilocal energy," Phys. Rev. D 75, 084026 (2007) [arXiv:gr-qc/0610088].
    [48] C. W. Misner, D. H. Sharp, Relativistic Equations for Adiabatic, Spherically
    Symmetric Gravitational Collapse, Phys. Rev. 136 (1964), B571-B576; W. C.
    Hernandez, C. W. Misner, Observer time as a coordinate in relativistic spherical
    hydrodynamics, Astrophys. J. 143 (1966) 452-464; M. E. Cahill, G. C. McVittie,
    Spherical symmetry and mass-energy in general relativity I. General theory, J.
    Math. Phys. 11 (1970) 1382-1391.
    [49] M. M. Afshar, Quasilocal Energy in FRW Cosmology," Class. Quant. Grav. 26,
    225005 (2009) [arXiv:0903.3982 [gr-qc]].
    [50] C. M. Chen, J. L. Liu and J. M. Nester, Quasi-local energy for cosmological
    models," Mod. Phys. Lett. A 22 (2007) 2039. [arXiv:0705.1080 [gr-qc]].
    [51] L. B. Szabados, Two-dimensional Sen connections and quasilocal energy mo-
    mentum," Class. Quant. Grav. 11, 1847 (1994) [arXiv:gr-qc/9402005].
    [52] N. ¶OMurchadha, L. B. Szabados and K. P. Tod, A comment on Liu and
    Yau''s positive quasi-local mass," Phys. Rev. Lett. 92 (2004) 259001. [arXiv:gr-
    qc/0311006].
    [53] M. T. Wang and S. T. Yau, A generalization of Liu-Yau''s quasi-local mass,"
    Commun. Anal. Geom. 15 (2007) 249. [math.DG/0602321].
    [54] N.P. Konopleva and V.N. Popov, Gauge Fields, (New York : Harwood Academic
    Publishers, 1981).

    QR CODE
    :::