跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳孔祥
Kong-Hsiang Chen
論文名稱: 於尋找單希格斯粒子中研究噴流子結構可觀測量
The Study of Jet Substructure Observables for the Search of Mono-Higgs
指導教授: 余欣珊
Shin-Shan Eiko Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 暗物質希格斯粒子緊湊緲子線圈大強子對撞機噴流子結構數據驅動
外文關鍵詞: Dark matter, Higgs boson, Compact Muon Solenoid, Large Hadron Collider, Jet substructure, Data driven
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 搜索暗物質與一個類標準模型的希格斯粒子同時生成的成果將會被呈現,其中希格斯玻色子衰變為一對底夸克。在來年計畫以CMS在質心能量13兆電子伏特的第二次質子質子對撞實驗中得到的完整數據來更新單希格斯粒子的結果,設計事件篩選的標準以區分信號與背景,此篇論文對噴流子結構變量N_2^1進行了三個部分的研究,首先我們研究了其對希格斯粒子的標記並與另一種噴流子結構變量τ_21比較性能,其次,在經過轉換後的噴流子結構變量N_2^DDT的篩選後,考慮數據與蒙地卡羅模擬之間差異的比例因子,最後,將數據導向的方法應用於量子色動力學事件裡,作為噴流子結構變量的進一步研究。


    A search for dark matter produced in association with a standard-model-like Higgs boson, where the Higgs boson decays into a pair of bottom quarks, is performed. In coming year, the plan is to update the mono-Higgs results by using the full Run II data from proton-proton collisions collected at CMS experiment at center-of-mass energy of 13 TeV. The selection criteria is devised to discriminate the signal from background. There are three parts of study for the jet substructure variable, N_2^1, in this thesis. First, We study the boosted Higgs boson tagging and compare the performance with another jet substructure variable, τ_21. Second, the scale factor for the difference between data and MC is considered after the selection of transformed jet substructure variable, N_2^DDT. Last, the data-driven method is applied for the further study of jet substructure variable with QCD samples.

    1 Introduction 1 1.1 Motivation ............................................ 1 1.2 The standard model .................................... 1 1.3 2HDM + a Model ........................................ 2 1.3.1 Parameters in the Model ............................. 3 2 CMS Detector in LHC 5 2.1 Tracker ............................................... 6 2.2 Electromagnetic Calorimeter ........................... 8 2.3 Hadron Calorimeter .................................... 8 2.4 Superconducting Magnet ................................ 9 2.5 Muon Detector ......................................... 10 2.6 Trigger ............................................... 11 3 Physic Object Reconstruction and Selection 13 3.1 Jet Reconstruction .................................... 13 3.1.1 The anti-kt ......................................... 13 3.1.2 Jet grooming ........................................ 15 3.1.3 Jet Substructure Variable ........................... 16 3.1.4 AK4 Jet and AK8 Jet ................................. 17 3.2 Missing Transverse Momentum ........................... 17 3.3 Identification of Leptons and Photons ................. 18 3.4 Event Selection ....................................... 18 4 Analysis 21 4.1 Dataset ............................................... 21 4.2 Comparing of τ_21 and N_2^1 .......................... 24 4.2.1 Mass Sculpting Phenomenon ........................... 25 4.2.2 The Performance of Jet Substructure Variable Cuts ... 26 4.3 Scale Factor of N_2^1 ................................. 30 4.4 Data-driven Method .................................... 32 4.4.1 Trigger Efficiency .................................. 32 4.4.2 Data-driven Transfer Factor ......................... 34 4.4.3 Closure Test ........................................ 37 4.4.4 Correlation Plot from Data-driven Method ............ 37 5 Conclusion and Outlook 43 Bibliography 45

    [1] Cush. File:Standard Model of Elementary Particles Anti.svg. 2018. URL: https://commons.wikimedia.org/wiki/File:Standard_Model_of_Elementary_Particles_Anti.svg.
    [2] Christopher G. Tully. Elementary particle physics in the nutshell. 2011.
    [3] Tomohiro Abe et al. “LHC Dark Matter Working Group: Next-generation spin-0 dark matter models”. In: (2018). arXiv: 1810.09420 [hep-ex].
    [4] G.C. Branco et al. “Theory and phenomenology of two-Higgs-doublet models”. In: Physics Reports 516.1 (2012). Theory and phenomenology of two-Higgs-doublet models, pp. 1–102. ISSN: 0370-1573. DOI: https://doi.org/10.1016/j.physrep.2012.02.002. URL: https://www.sciencedirect.com/science/article/pii/S0370157312000695.
    [5] Detector| CMS Experiment. URL: https://cms.cern/detector.
    [6] W. Adam et al. “The CMS Phase-1 pixel detector upgrade”. In: Journal of Instrumentation 16.02 (2021), P02027–P02027. DOI: 10.1088/1748-0221/16/02/p02027. URL: https://doi.org/10.1088/1748-0221/16/02/p02027.
    [7] “The CMS experiment at the CERN LHC”. In: Journal of Instrumentation 3.08 (Aug. 2008), S08004–S08004. DOI: 10.1088/1748-0221/3/08/s08004. URL: https://doi.org/10.1088/1748-0221/3/08/s08004.
    [8] Silicon Strips| CMS Experiment. URL: https://cms.cern/detector/identifying-tracks/silicon-strips.
    [9] Energy of Hadrons(HCAL)| CMS Experiment. URL: https://cms.cern/detector/measuring-energy/energy-hadrons-hcal.
    [10] Muon Drift Tubes| CMS Experiment. URL: https://cms.cern/index.php/detector/detecting-muons/muon-drift-tubes.
    [11] Cathode Strip Chambers| CMS Experiment. URL: https://cms.cern/index.php/detector/detecting-muons/cathode-strip-chambers.
    [12] Resistive Plate Chambers| CMS Experiment. URL: https://cms.cern/detector/detecting-muons/resistive-plate-chambers.
    [13] “The CMS high level trigger”. In: The European Physical Journal C 46.3 (2006), 605–667. DOI: 10.1140/epjc/s2006-02495-8. URL: http://dx.doi.org/10.1140/epjc/s2006-02495-8.
    [14] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-kt clustering algorithm”. In: Journal of High Energy Physics 2008.04(2008), pp. 063–063. DOI: 10.1088/1126-6708/2008/04/063. URL: https://doi.org/10.1088/1126-6708/2008/04/063.
    [15] Ryan Atkin. “Review of jet reconstruction algorithms”. In: Journal of Physics: Conference Series 645 (2015), p. 012008. DOI: 10.1088/1742-6596/645/1/012008. URL: https://doi.org/10.1088/1742-6596/645/1/012008.
    [16] Andrew J. Larkoski et al. “Soft drop”. en. In: Journal of High Energy Physics 2014.5 (2014). DOI: 10.1007/jhep05(2014)146. arXiv: 1402.2657v2. URL: http://dx.doi.org/10.1007/JHEP05(2014)146.
    [17] Ian Moult, Lina Necib, and Jesse Thaler. “New angles on energy correlation functions”. en. In: Journal of High Energy Physics 2016.12 (2016). DOI: 10.1007/jhep12(2016)153. arXiv: 1609.07483v2. URL: http://dx.doi.org/10.1007/JHEP12(2016)153.
    [18] Andrew J. Larkoski, Gavin P. Salam, and Jesse Thaler. “Energy correlation functions for jet substructure”. en. In: Journal of High Energy Physics 2013.6 (2013). DOI: 10.1007/jhep06(2013)108. arXiv: 1305.0007v3. URL: http://dx.doi.org/10.1007/JHEP06(2013)108.
    [19] Daniele Bertolini et al. “Pileup per particle identification”. en. In: Journal of High Energy Physics 2014.10 (2014). DOI: 10.1007/jhep10(2014)059. URL: http://dx.doi.org/10.1007/JHEP10(2014)059.
    [20] James Dolen et al. “Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure”. In: JHEP 05 (2016), p. 156. DOI: 10.1007/JHEP05(2016)156. arXiv: 1603.00027 [hep-ex].
    [21] CMS Collaboration. “Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at √s = 13 TeV”. In: JHEP 12 (2020), p. 085. DOI: 10.1007/JHEP12(2020)085. arXiv: 2006.13251v2 [hep-ex].
    [22] combine tool home page. URL: https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/.

    QR CODE
    :::