跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李炳賢
Bing-Sian Li
論文名稱: 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
Optimization of The Laser-Guided Direct Writing System and Its Application in Living Single-cell Printing and Photomedcine
指導教授: 施聖洋
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 91
中文關鍵詞: 雷射導引直寫系統雷射光鉗系統細胞陣列低能量雷射光治療艾黴素活性氧化物質
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文整合了雷射導引直寫技術(Laser Guide Direct Writing,
    LGDW )與雷射光鉗(Optical Tweezers)系統來進行快速單一活體細胞
    動態效應分析。本研究採用830 nm 雷射光源來建構雷射導引直寫系
    統,並將雷射引導入倒立式顯微鏡系統,進而與微流體樣本置換系統
    以及雷射光鉗系統整合,得以透過非接觸式操控單一細胞於三維空間
    移動,並經排列後組成二維平面活細胞陣列。此細胞陣列可作為藥物
    作用下的細胞型態即時監測,以及觀察細胞間的變化差異,因此單一
    細胞層級細胞陣列可作為最為直接且顯著的方式來觀察藥物與細胞
    的交互作用。雷射導引直寫系統除了執行建構細胞陣列功能,本研究
    也將830 nm 雷射光源運用於探討低能量雷射光治療(Low-Level Laser
    Therapy ,LLLT)的光生物調節(Photobiomodulation)作用機制,藉以觀察細胞陣列在接受近紅外光雷射刺激的細胞反應與活性氧化物質
    (Reactive Oxygen Species, ROS)的形成,並利用𝐻2𝐷𝐶𝐹𝐷𝐴螢光染劑來標定細胞經由LLLT 作用後所產生的活性氧化物質變化量,作為推測
    低能量雷射光治療的細胞調控機制。此外也將𝐻2𝐷𝐶𝐹𝐷𝐴運用於觀察
    化療藥物艾黴素(Doxorubicin)作用於細胞後所產生之活性氧化物質
    的形成,其中Doxorubicin 已被證實細胞經其作用所產生的過量活性
    氧化物質會引起細胞乃至器官氧化壓力(Oxidative Stress)。本論文希冀透過雷射直寫系統與雷射光鉗系統的整合,可以延伸運用於單一活
    體細胞層級的光電醫學與藥物快篩平台,作為探討低能量雷射光治療
    與抗癌藥物以及其他治療方法的作用機制與功能驗證。


    In this study, the integration of laser-guided direct writing(LGDW) and This thesis presents a new methodology that integrates a laser-guided direct writing (LGDW) system and optical tweezers system to analyze the dynamic response of single living cells. In this study, we apply 830 nm laser to construct a LGDW system that is integrated into an inverted microscope, together with microfluidic flow chamber, and incorporated an optical tweezers system to manipulate single living cell in three dimension and then pattern two dimension (2D) cell array in well-defined manner. This 2D living cell array provides a direct observation platform and allows us to monitor the variation of cell morphology during drug-cell interaction
    in real-time. On the other hand, the LGDW system will further applied to conduct the low-level laser therapy (LLLT) photobiomodulation at the single cell level and realize the effect of LLLT photobiomodulation on the
    generation of reactive oxygen species (ROS), where the ROS formed by LLLT will be identified with 𝐻2𝐷𝐶𝐹𝐷𝐴 fluorescence. Besides, 𝐻2𝐷𝐶𝐹𝐷𝐴 fluorescence is used to detect the ROS formed by doxorubicin when used as antitumor drug is attributed to the generation of ROS. We anticipate the proposed integrated system including LGDW system and optical tweezers system can be applied for photomedicine and drug screening platform at the single-cell level so as to investigate the mechanism and verify the effectiveness of LLLT, antitumor drugs, and other specific therapies.

    第一章 緒論 1 1.1 前言 1 1.2 實驗介紹 3 1.3 雷射直寫系統最佳化及其單一細胞列印與光電實驗流程與架構 6 第二章 文獻回顧與理論基礎 7 2.1 雷射光鉗技術暨共軛焦平面之應用 7 2.2 細胞平台暨組織工程到再生醫學應用 11 2.3 雷射導引直寫技術 14 2.4藥物篩選流程 16 2.5蒽環類作用於細胞機制 18 2.6低能量雷射光治療 20 第三章 實驗方法與步驟 26 3.1 實驗儀器設備、藥品樣本與細胞 26 3.1.1 實驗儀器 26 3.1.2實驗藥物樣本、配製與作用 37 3.2實驗方法 40 3.2.1 830 nm雷射直寫系統功率校正 40 3.2.2 830 nm雷射光束特性 41 3.2.3 830 nm雷射聚焦面積評估 44 3.2.4細胞繼代 45 3.2.5 細胞列印與貼附分析 48 3.2.6 過氧化氫致使細胞產生ROS之分析 49 3.2.7低能量雷射治療之細胞內ROS分析 54 3.2.8 Doxorubicin抗癌藥物細胞接受率(uptake)與產生ROS分析 55 第四章 實驗結果與討論 57 4.1雷射直寫系統功率校正 57 4.2雷射聚焦面積與評估 59 4.3細胞列印與貼附分析 60 4.4過氧化氫致使細胞產生ROS之螢光訊號定量分析 62 4.5 LLLT刺激細胞產生ROS之螢光訊號定量分析 66 4.6 Doxorubicin致使細胞產生ROS與Doxorubicin進入細胞核接受率之分析 67 第五章 結論與未來方向 72 參考文獻. 74

    [1] Benjamin Kading, “Utilizing in-situ resources and 3D printing structures for a manned Mars mission”, Acta Astronautica, pp. 317-326 , 2015.
    [2] Michele Buda, “Novel 3D-printed prosthetic composite for reconstruction of massive bone defects in lower extremities after malignant tumor resection”, Journal of Bone Oncology, pp. 100220, 2018.
    [3] Michele Buda, “Accuracy of 3-dimensional computer-aided manufactured single-tooth implant definitive casts ” , The Journal of Prosthetic Dentistry, Vol 120, pp. 913-918, 2018.
    [4] Jinah Jang, Hun-Jun Park, “3D printed complex tissue construct using stem cell- laden decellularized extracellular matrix bioinks for cardiac repair ”,Biomaterials, Vol 112, pp. 264-274, 2017.
    [5] Yaakov Nahmias and David J Odde, “Micropatterning of living cells by laserguided direct writing: application to fabrication of hepatic–endothelial sinusoidlike structures ”, Nature Protocols, Vol.1, pp. 2288-2296, December 2006.
    [6] Yaakov Nahmias, Robert E. Schwartz, “Endothelium-Mediated Hepatocyte Recruitment in the Establishment of Liver-like Tissue In Vitro ”,Tissue Engineering, Vol 12, pp. 1627-1638, 2006.
    [7] Yaakov Nahmias, Robert E. Schwartz, “Laser-Guided Direct Writing for Three-Dimensional Tissue Engineering ”, Biotechnology and Bioengineering, Vol 34, pp. 129-136, October 2005.
    [8] Lenke Horva´ th, Yuki Umehara, “Engineering an in vitro air-blood barrier by 3D bioprinting ”, Scientific Reports, Vol 5, 7974, January 2015.
    [9] M. Woerdemann, Structured Light Fields, Springer-Verlag Berlin Heidelberg
    2012.
    [10] 王薇婷,「利用高解析度雷射光鉗系統進行肺癌標靶治療藥物PD153035之熱力學參數分析」, 碩士論文,民國98 年。
    [11] Jordan S. Miller, “The Billion Cell Construct: Will Three-Dimensional Printing Get Us There ”, Plos Biology, Vol 12, pp. 1-9, June 2014.
    [12] Virginie Keriquel, Fabien Guillemot, “In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice ”,Biofabrication, Vol 2, pp. 8, March 2010
    [13] Jean-Michel Bourget, Olivia Kérourédan, “Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration ”, Biomed Research International, Vol 2016, Article ID 3569843,January 2016.
    [14] Feng Xu, JinHui Wu, “Microengineering Methods for Cell Based Microarraysand High-Throughput Drug Screening Applications ”, Biofabrication,September 2011.
    [15] Jingyuan Yan, “Laser-Assisted Printing of Alginate and Cellular Tubes ”,Clemson University, Graduate Thesis, 2013.
    [16] David M. Kingsley, Andrew D. Dias, “Microcapsules and 3D Customizable Shelled Microenvironments From Laser Direct-Written Microbeads ”, Biotechnology and Bioengineering, Vol. 113, pp. 2264-2274, October 2016.
    [17] Glen R. Kirkham, Emily Britchford, “Precision Assembly of Complex Cellular Microenvironments using Holographic Optical Tweezers ”, Scientific Reports,Vol 5: 8577, pp. 1-7, February 2015.
    [18] Nick Erdman, Lucas Schmidt, “Microfluidics-Based Laser Guided Cell-Micropatterning System ”,Biofabrication, pp. 1-19, September 2015.
    [19] Salman R Khetani & Sangeeta N Bhatia, “Microscale culture of human liver cells for drug development ”, Nature Biotechnology, Vol 26, pp. 120-126, January 2008.
    [20] Oktay Tacar, Pornsak Sriamornsak, “Doxorubicin: an update on anticancer molecular action, toxicity and novel delivery system ”, Pharmacy and Pharmacology, Vol 65, pp. 157-170, June 2012.
    [21] Dah-Shyong Yu , Hui-Yu Yan, “Comparison of therapeutic efficacy of lipodoxorubicin and doxorubicin in treating bladder cancer ”, Urological Science,2016.
    [22] Katerina Tomankova , Katerina Polakova, “In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines ”, International Journal of Nanomedicine, pp. 949-961, January 2015.
    [23] Aaron Chih-Hao Chen, Ying-Ying Huang, “Role of reactive oxygen species in low level light therapy ”, Proc. of SPIE, Vol 7165, April 2018.
    [24] Reza Amid, Mahdi Kadkhodazadeh, “Effect of Low Level Laser Therapy on Proliferation and Differentiation of the Cells Contributing in Bone Regeneration ”, Lasers in Medical Sciences, Vol. 5, No. 4, Autumn 2014.
    [25] Á guida Cristina Gomes Henriques, “Low-level laser therapy promotes proliferation and invasion of oral squamous cell carcinoma cells ”, Lasers Med Sci, Vol 29, pp. 1385-1395, January 2014.

    QR CODE
    :::