跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊季璋
Ge-chang Young
論文名稱: 多項式模糊系統穩定性分析
Stabilization Analysis of Polynomial FuzzySystems using LMI and SOS
指導教授: 羅吉昌
J.C.LO
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: ts模糊模型波雅定理二次寬鬆偕正矩陣線性矩陣不等式
外文關鍵詞: Polya theorem, Lyapunov quadratic stability, LMI., slack variables, SOS
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主要分為三大部分。第一部份介紹李亞普諾夫(Lyapunov~stability)判斷以及數學推導,再來介紹寬鬆變數以及波雅Polya定理的結合,系統是不是更容易求解(寬鬆性),第三部份則是加入了前件部不同的控制器來做討論,最後以平方和寬鬆方法(sum of squares, SOS)為主,線性矩陣不等式(Linear matrix inequalities, LMI)為輔作為判斷工具。第一部份所探討的為一般所熟悉的現有成果。在較早的 Takagi-Sugeno (T-S) 模糊控制文獻中,大部分研究都只著重於找出滿足二次穩定 (quadratically stable) 的共同李雅普諾夫函數(common/single/global $P$),2000年左右由於寬鬆變數矩陣(slack matrix) 的概念出現,加速了求解過程;2005年波雅理論的發展已趨成熟,當隨著波雅冪次(P卅’{o}lya''s exponent)增加到足夠大時,可使模糊系統穩定度滿足充分條件,對寬鬆性有很大幫助;在2008年時,萬嘉仁學長的研究中,將寬鬆變數矩陣概念及波雅理論加以結合,模擬結果顯示所需的波雅冪次小於波雅理論所建議的值,並且展現了更大的解空間,但隨著波雅冪次的增加,寬鬆變數量會呈指數遞增,造成電腦運算上的負擔,因此,提出了平方和寬鬆法以解決變數上的問題,並探討其寬鬆性。但系統矩陣中始終都是常數,但實際範例中可能並非如此,故我們在系統矩陣中加入了$x$,故為此篇論文的主軸。再來是前件部不對稱的部份,因為前件部的不同,所以歸屬函數也會不同,故我們做了一個轉換,使得兩個前件部有所關聯,再進一步排成大矩陣的形式,放入電腦求解。


    In this thesis, three topics are addressed First, we investigate a general control problem via the Lyapunov quadratic stability, and the system matrix elements contains x; second we investigate slack variables and the Polya''s theorem; third we investigate combinational of different membership functions(imperfect matching) to tackle the stability problem, in the final use LMI(Linear matrix inequalities)-toolbox and SOS(sum of squares)-toolbox to slove

    一、簡介....1 文獻回顧....1 研究動機....2 論文結構....3 符號標記....3 預備定理....5 二、系統數學模型符號標記....7 連續系統李雅普諾夫函數....7 連續系統數學架構....7 連續系統狀態回饋控制系統....8 離散系統李雅普諾夫函數....10 離散系統數學架構....10 離散系統狀態回饋控制系統....11 三、矩陣型波雅定理與寬鬆變數....14 矩陣型波雅定理....14 寬鬆變數....15 平方和寬鬆法....20 共同P穩定性檢測條件....21 穩定性檢測條件加上了寬鬆變數....22 四、前件部不對稱....31 連續系統數學推導....31 連續系統狀態回饋控制系統....31 連續系統狀態回饋控制系....33 離散系統數學架構....34 離散系統狀態回饋控制....35 加入波雅定理....36 加入波雅定理以及寬鬆變數....41 sos共同p穩定性檢測條件....41 加入了寬鬆變數利用乓乏乓求解....41 五、電腦模擬....50 六、總結與未來方向....65 總結....65 未來研究方向....65

    J.~Wan and J.~Lo, ”{LMI relaxations for nonlinear fuzzy control systems via
    homogeneous polynomials},” in卅emph{The 2008 IEEE World Congress on
    Computational Intelligence, FUZZ2008}, Hong Kong, CN, Jun. 2008, pp.
    134--140.
    T.~Takagi and M.~Sugeno, ”{Fuzzy identification of systems and its
    applications to modelling and control},”卅emph{IEEE Trans. Syst., Man,
    Cybern.}, vol.~15, no.~1, pp. 116--132, Jan. 1985.
    M.~Sugeno and G.~Kang, ”{Structure identification of fuzzy model},”
    卅emph{Fuzzy Set and Systems}, vol.~28, pp. 15--33, 1988.
    K.~Tanaka and M.~Sugeno, ”{Stability analysis and design of fuzzy control
    systems},”卅emph{Fuzzy Set and Systems}, vol.~45, pp. 135--156, 1992.
    W.~Haddad and D.~Bernstein, ”{Explicit construction of quadratic Lyapunov
    functions for the small gain, positive, circle and Popov theorems and their
    application to robust stability. Part II: discrete-time theory},”
    卅emph{Int''l J. of Robust and Nonlinear Control}, vol.~4, pp. 249--265, 1994.
    P.~Parrilo,卅emph{{Structured Semidefinite Programs and Semialgebraic Geometry
    Methods in Robustness and Optimization}}.hskip 1em plus 0.5em minus
    0.4em
    elax Caltech, Pasadena, CA.: PhD thesis, 2000.
    S.~Prajna, A.~Papachristodoulou, and P.~Parrilo, ”{Introducing SOSTOOLS: a
    general purpose sum of squares programming solver},” in卅emph{Proc of IEEE
    CDC}, Montreal, Ca, Jul. 2002, pp. 741--746.
    S.~Prajna, A.~Papachristodoulou, and {it et al}, ”{New developments on sum of
    squares optimization and SOSTOOLS},” in卅emph{Proc. the 2004 American
    Control Conference}, 2004, pp. 5606--5611.
    K.~Tanaka, H.~Yoshida, and {it et al}, ”{A sum of squares approach to
    stability analysis of polynomial fuzzy systems},” in卅emph{Proc. of the 2007
    American Control Conference}, New York, NY, Jul. 2007, pp. 4071--4076.
    ------, ”{Stabilization of polynomial fuzzy systems via a sum of squares
    approach},” in卅emph{Proc. of the 22nd Int''l Symposium on Intelligent
    Control Part of IEEE Multi-conference on Systems and Control}, Singapore,
    Oct. 2007, pp. 160--165.
    H.~Ichihara and E.~Nobuyama, ”{A computational approach to state feedback
    synthesis for nonlinear systems based on matrix sum of squares
    relaxations},” in卅emph{Proc. 17th Int''l Symposium on Mathematical Theory of
    Network and Systems}, Kyoto, Japan, 2006, pp. 932--937.
    H.~Ichihara, ”{Observer design for polynomial systems using convex
    optimization},” in卅emph{Proc. of the 46th IEEE CDC}, New Orleans, LA, Dec.
    2007, pp. 5347--5352.
    E.~Kim and H.~Lee, ”{New approaches to relaxed quadratic stability condition
    of fuzzy control systems},”卅emph{IEEE Trans. Fuzzy Systems}, vol.~8, no.~5,
    pp. 523--534, Oct. 2000.
    X.~Liu and Q.~Zhang, ”{New approaches to $H_{infty}$ controller designs based
    on fuzzy observers for T-S fuzzy systems via LMI},”卅emph{Automatica},
    vol.~39, pp. 1571--1582, 2003.
    C.~Fang, Y.~Liu, S.~Kau, L.~Hong, and C.~Lee, ”{A new LMI-based approach to
    relaxed quadratic stabilization of T-S fuzzy control systems},”卅emph{IEEE
    Trans. Fuzzy Systems}, vol.~14, no.~3, pp. 386--397, Jun. 2006.
    S.~Prajna, A.~Papachristodoulou, and F.~Wu, ”{Nonlinear control synthesis by
    sum of squares optimization: A Lyapunov-based Approach},” in卅emph{Proc. 5th
    Asian Control Conference}, 2004, pp. 157--165.
    H.K.Lam and F.H.F.Leung, ”Stability analysis of fuzzy fontrol systems subject
    to uncertain grades of membership,”卅emph{2005 ieee}~pp. 1322--1325, Nov. 2005.
    K.Tanaka, H.Ohtake, and H.O.Wang, ”{An SOS-Based Stable Control of Polynomial
    Discrete Fuzzy Systems },”卅emph{2008 American Control Conference}~pp. 4875--4880, june. 2008.
    H.K. Lam, and L.D.Seneviratne, ”{Polynomial Fuzzy-model-Based Control Systems: Stability Analysis via Piecewise-linear membership function},"emph{tfs}~vol.~19, pp. 588--593, 2011.
    H.K. Lam”{Stability Analysis of Polynomial fuzzy-model-based control systems under perfect/imperfect premise matching},"emph{iet}~vol.~5, pp. 1689--1697, 2011.

    QR CODE
    :::