| 研究生: |
楊季璋 Ge-chang Young |
|---|---|
| 論文名稱: |
多項式模糊系統穩定性分析 Stabilization Analysis of Polynomial FuzzySystems using LMI and SOS |
| 指導教授: |
羅吉昌
J.C.LO |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | ts模糊模型 、波雅定理 、二次寬鬆 、偕正矩陣 、線性矩陣不等式 |
| 外文關鍵詞: | Polya theorem, Lyapunov quadratic stability, LMI., slack variables, SOS |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主要分為三大部分。第一部份介紹李亞普諾夫(Lyapunov~stability)判斷以及數學推導,再來介紹寬鬆變數以及波雅Polya定理的結合,系統是不是更容易求解(寬鬆性),第三部份則是加入了前件部不同的控制器來做討論,最後以平方和寬鬆方法(sum of squares, SOS)為主,線性矩陣不等式(Linear matrix inequalities, LMI)為輔作為判斷工具。第一部份所探討的為一般所熟悉的現有成果。在較早的 Takagi-Sugeno (T-S) 模糊控制文獻中,大部分研究都只著重於找出滿足二次穩定 (quadratically stable) 的共同李雅普諾夫函數(common/single/global $P$),2000年左右由於寬鬆變數矩陣(slack matrix) 的概念出現,加速了求解過程;2005年波雅理論的發展已趨成熟,當隨著波雅冪次(P卅’{o}lya''s exponent)增加到足夠大時,可使模糊系統穩定度滿足充分條件,對寬鬆性有很大幫助;在2008年時,萬嘉仁學長的研究中,將寬鬆變數矩陣概念及波雅理論加以結合,模擬結果顯示所需的波雅冪次小於波雅理論所建議的值,並且展現了更大的解空間,但隨著波雅冪次的增加,寬鬆變數量會呈指數遞增,造成電腦運算上的負擔,因此,提出了平方和寬鬆法以解決變數上的問題,並探討其寬鬆性。但系統矩陣中始終都是常數,但實際範例中可能並非如此,故我們在系統矩陣中加入了$x$,故為此篇論文的主軸。再來是前件部不對稱的部份,因為前件部的不同,所以歸屬函數也會不同,故我們做了一個轉換,使得兩個前件部有所關聯,再進一步排成大矩陣的形式,放入電腦求解。
In this thesis, three topics are addressed First, we investigate a general control problem via the Lyapunov quadratic stability, and the system matrix elements contains x; second we investigate slack variables and the Polya''s theorem; third we investigate combinational of different membership functions(imperfect matching) to tackle the stability problem, in the final use LMI(Linear matrix inequalities)-toolbox and SOS(sum of squares)-toolbox to slove
J.~Wan and J.~Lo, ”{LMI relaxations for nonlinear fuzzy control systems via
homogeneous polynomials},” in卅emph{The 2008 IEEE World Congress on
Computational Intelligence, FUZZ2008}, Hong Kong, CN, Jun. 2008, pp.
134--140.
T.~Takagi and M.~Sugeno, ”{Fuzzy identification of systems and its
applications to modelling and control},”卅emph{IEEE Trans. Syst., Man,
Cybern.}, vol.~15, no.~1, pp. 116--132, Jan. 1985.
M.~Sugeno and G.~Kang, ”{Structure identification of fuzzy model},”
卅emph{Fuzzy Set and Systems}, vol.~28, pp. 15--33, 1988.
K.~Tanaka and M.~Sugeno, ”{Stability analysis and design of fuzzy control
systems},”卅emph{Fuzzy Set and Systems}, vol.~45, pp. 135--156, 1992.
W.~Haddad and D.~Bernstein, ”{Explicit construction of quadratic Lyapunov
functions for the small gain, positive, circle and Popov theorems and their
application to robust stability. Part II: discrete-time theory},”
卅emph{Int''l J. of Robust and Nonlinear Control}, vol.~4, pp. 249--265, 1994.
P.~Parrilo,卅emph{{Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization}}.hskip 1em plus 0.5em minus
0.4em
elax Caltech, Pasadena, CA.: PhD thesis, 2000.
S.~Prajna, A.~Papachristodoulou, and P.~Parrilo, ”{Introducing SOSTOOLS: a
general purpose sum of squares programming solver},” in卅emph{Proc of IEEE
CDC}, Montreal, Ca, Jul. 2002, pp. 741--746.
S.~Prajna, A.~Papachristodoulou, and {it et al}, ”{New developments on sum of
squares optimization and SOSTOOLS},” in卅emph{Proc. the 2004 American
Control Conference}, 2004, pp. 5606--5611.
K.~Tanaka, H.~Yoshida, and {it et al}, ”{A sum of squares approach to
stability analysis of polynomial fuzzy systems},” in卅emph{Proc. of the 2007
American Control Conference}, New York, NY, Jul. 2007, pp. 4071--4076.
------, ”{Stabilization of polynomial fuzzy systems via a sum of squares
approach},” in卅emph{Proc. of the 22nd Int''l Symposium on Intelligent
Control Part of IEEE Multi-conference on Systems and Control}, Singapore,
Oct. 2007, pp. 160--165.
H.~Ichihara and E.~Nobuyama, ”{A computational approach to state feedback
synthesis for nonlinear systems based on matrix sum of squares
relaxations},” in卅emph{Proc. 17th Int''l Symposium on Mathematical Theory of
Network and Systems}, Kyoto, Japan, 2006, pp. 932--937.
H.~Ichihara, ”{Observer design for polynomial systems using convex
optimization},” in卅emph{Proc. of the 46th IEEE CDC}, New Orleans, LA, Dec.
2007, pp. 5347--5352.
E.~Kim and H.~Lee, ”{New approaches to relaxed quadratic stability condition
of fuzzy control systems},”卅emph{IEEE Trans. Fuzzy Systems}, vol.~8, no.~5,
pp. 523--534, Oct. 2000.
X.~Liu and Q.~Zhang, ”{New approaches to $H_{infty}$ controller designs based
on fuzzy observers for T-S fuzzy systems via LMI},”卅emph{Automatica},
vol.~39, pp. 1571--1582, 2003.
C.~Fang, Y.~Liu, S.~Kau, L.~Hong, and C.~Lee, ”{A new LMI-based approach to
relaxed quadratic stabilization of T-S fuzzy control systems},”卅emph{IEEE
Trans. Fuzzy Systems}, vol.~14, no.~3, pp. 386--397, Jun. 2006.
S.~Prajna, A.~Papachristodoulou, and F.~Wu, ”{Nonlinear control synthesis by
sum of squares optimization: A Lyapunov-based Approach},” in卅emph{Proc. 5th
Asian Control Conference}, 2004, pp. 157--165.
H.K.Lam and F.H.F.Leung, ”Stability analysis of fuzzy fontrol systems subject
to uncertain grades of membership,”卅emph{2005 ieee}~pp. 1322--1325, Nov. 2005.
K.Tanaka, H.Ohtake, and H.O.Wang, ”{An SOS-Based Stable Control of Polynomial
Discrete Fuzzy Systems },”卅emph{2008 American Control Conference}~pp. 4875--4880, june. 2008.
H.K. Lam, and L.D.Seneviratne, ”{Polynomial Fuzzy-model-Based Control Systems: Stability Analysis via Piecewise-linear membership function},"emph{tfs}~vol.~19, pp. 588--593, 2011.
H.K. Lam”{Stability Analysis of Polynomial fuzzy-model-based control systems under perfect/imperfect premise matching},"emph{iet}~vol.~5, pp. 1689--1697, 2011.