跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭聖學
Sheng-Xue Xiao
論文名稱: 多量子點系統之熱電效應
Thermoelectric Properties in Multiple Quantum Dot System
指導教授: 郭明庭
David M.-T. Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 44
中文關鍵詞: 量子點熱電優值熱電效應
外文關鍵詞: figure of merit, Thermoelectric effect, quantum dot
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文所探討的是將量子點嵌入於絕緣層,並且在絕緣層的兩端連接上金屬電極形成一個多量子點之熱電轉換的系統,並且模擬此系統在庫倫阻斷區域中的電導、熱導、thermal power、以及ZT值。此多量子點的系統以多能階的安德森模型來描述,並且藉由Keldysh格林函數的技巧,來計算電子與熱在穿遂過程中所產生的電流與熱流。當系統操作在線性區域之中,且穿隧率很小的情況之下,雖然電子的庫倫交互作用力對ZT值的影響甚巨,但是仍然可以得到相當不錯的ZT值。


    The electrical conductance, thermal conductance, thermal power and figure of merit (ZT) of semiconductor quantum dots (QDs) embedded into an insulator matrix connected with metallic electrodes are theoretically investigated in the Coulomb blockade regime. The multilevel Anderson model is used to simulate the multiple QDs junction system. The charge and heat currents in the sequential tunneling process are calculated by the Keldysh Green function technique. In the linear response regime the ZT values are still very impressive in the small tunneling rates case, although the effect of electron Coulomb interaction on ZT is significant.

    目錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 IⅤ 圖目錄 Ⅵ 表目錄 ⅥI 第一章 導論 1 1-1 前言 1 1-2熱電元件簡介 2 1-3 熱電元件基本定理 4 1-4 熱電材料發展 6 第二章 理論原理 9 2-1 系統模型 9 2-2 推遲格林函數 13 2-2-1 單量子點格林函數 14 2-2-2 多量子點格林函數 14 2-3 量子點電晶體ZT的定義 18 第三章 單電子電晶體熱電特性 21 3-1 前言 21 3-2 多量子點系統 23 3-2-1 元件結構 23 3-2-2 基態能階偏移 25 3-2-3 電子庫倫交互作用 27 3-2-4 電子的非彈性碰撞 29 3-3 聲子熱導 31 第四章 閘極電壓對多量子點系統之影響 34 4-1 前言 34 4-1-1 ZT值與其各項參數 34 4-2 閘極電壓對不同量子點系統的影響 38 4-2-1 閘極電壓對量子點在不同間距下的影響 38 4-2-2 閘極電壓對相異量子點系統的影響 40 第五章 結論 41 參考文獻 42

    參考文獻
    [1] Seebeck, T.J., “Magnetische polarization der metalle und erzedurch temperature-differenze.
    Abhand deut,” Akad. Wiss. Berlin, pp. 265-373, (1821)
    [2] Peltier, J.C., “Nouvelles experiences sur la caloriecete des courans electriques.” Ann. Chem.,
    LVI, pp. 371-387, (1834)
    [3]Altenkirch, E., Physikalische Zeitschrift, 12, pp. 920-924, (1911)
    [4]A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling”, Infosearch, London, (1957)
    [5] L. D. Hicks and M. S. Dresselhaus “Effect of quantum-well structures on the thermoelectric figure of
    merit” Phys. Rev. B, 47, 12727, (1997)
    [6] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E.Laforge, “Quantum dot superlattice thermoelectric
    materials” Science, 297, 2229-2232, (2002)
    [7]R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O''Quinn, “Thin-film thermoelectric devices with
    high room-temperature figures of merit”, Nature, 413, 597-602, (2001)
    [8] A. I. Hochbaum, R. Chen, R. D. Delgado1, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar,
    P. Yang1,3,4 “Enhanced thermoelectric performance of rough silicon nanowires”, Nature 451, 163
    (2008).
    [9] [10] [11] [12] [13] G.S.Nolas, J.Sharp, H.J.Goldsmid (2001)
    [14]O. Yamashita, “ Thermoelectric properties of heavily GaP- and P-doped Si0.95Ge0.05”, J.
    Appl. Phys. 89, 1 (2001)
    [15]L.T. Zhang, M. Tsutsui, K. Ito, and M. Yamaguchi “Thermoelectric properties of Zn4Sb3 thin films
    prepared by magnetron Sputtering”, Thin Solid Films 443, 84, (2003)
    [16] Heng Wang, Jing-Feng Li,a_ Ce-Wen Nan, and Min Zhou, “High-performance Ag0.8Pb18+xSbTe20
    thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering”, Appl.
    Phys. Lett. 88, 092104, (2006)
    [17]Pierre F. P. Poudeu, Jonathan D’Angelo, Huijun Kong, Adam Downey, Jarrod L. Short,
    Robert Pcionek, Timothy P. Hogan, Ctirad Uher, and Mercouri G. Kanatzidis,“ Spinodal
    Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured thermoelectrics:
    enhanced performance in Pb1-xSnxTe−PbS”, J. AM. CHEM. SOC 129, 9780 (2007)
    [18] S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang and X. B. Zhao, “Nanostructures in
    high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials”, Nanotechnology 19, 245707
    (2008)
    [19] W. Xie, X. Tang, Y. Yan, Q. Zhang, and Terry M. Tritt ,“High thermoelectric performance
    BiSbTe alloy with unique low-dimensional structure”, J. Appl. Phys. 105, 113713 (2009)
    [20] David M. -T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single
    quantum dot”, Physica E, 27, 355 (2005).
    [21] Y. Meir, N.S. Wingreen and P.A. Lee, “Low-temperature transport through a quantum dot: The
    Anderson model out of equilibrium” Phys. Rev. Lett. 70, 2601 (1993)
    [22] L.V. Keldysh: Zh. Eksp. Teor. Fiz. 47 (1964) 1515 Sov.Phys. JETP 20 1018 (1965).
    [23] Sophia J. Sun and Yia-Chung Chang, “Modeling self-assembled quantum dots by the
    effective bond-orbital method”, Phys. Rev. B, 62, 13631 (2000)
    [24] David M.-T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure
    junction involving multiple energy”, Phys. Rev. Lett. 99 086803 (2007)
    [25] ]David M.-T. Kuo, Y. C. Chang, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels” Phys. Rev.B 77 245412 (2008)
    [26]David M.-T. Kuo, Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions” Phys. Rev.B 81 205321 (2010)
    [27] T. Brandes and B. Kramer, “Spontaneous Emission of Phonons by Coupled Quantum Dots”, Phys. Rev. Lett. 83, 3021 (1999)
    [28] B. Dong, H. L. Cui, X. L. Lei, and N. J. M. Horing, “Shot noise of inelastic tunneling through quantum dot systems”, Phys. Rev. B 71, 045331 (2005)
    [29] K. Q. Chen, W. X. Li, W. Duan, Z. Shuai , B. L . Gu, “Effect of defects on the thermal conductivity in a nanowire” Phys. Rev. B 72, 045422 (2005)
    [30] X. Zianni, “Theory of the energy-spectrum dependence of the electronic thermoelectric tunneling coefficients of a quantum dot” Phys. Rev. B 78, 165327 (2008)

    QR CODE
    :::