| 研究生: |
阮冠閔 Guan-Min Juan |
|---|---|
| 論文名稱: |
使用蘭摩爾探針與光放射光譜儀進行ECR-CVD 即時性非晶矽薄膜製程電漿診斷 Langmuir probe and OES diagnostic study of ECR plasma for amorphous silicon deposition process |
| 指導教授: |
利定東
Tomi Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 薄膜 、蘭摩爾探針 、光放射光譜儀 、電子迴旋共振 、氣相沉積 、非晶矽 |
| 外文關鍵詞: | thin film, langmuir probe, OES, ECR, CVD, Amorphous silicon |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用電漿光放射光譜儀(Optical Emission Spectroscopy, OES)與蘭摩爾探針(Langmuir probe)診斷電子迴旋共振 之電漿。研究中,除使用探針針對電子密度、電子溫度及電漿電位等電漿參數進行定量量測外,並搭配OES計算其電漿物種光譜比例與其趨勢變化進行定性分析。最終,本研究並沉積氫化非晶矽薄膜,依序改變微波功率、工作壓力、共振磁場以及氫稀釋比等操作參數,結合上述探針與OES光譜的分析結果,找出操作參數與電漿特性以及沉積速率、氫含量、微結構因子以及光暗電導等薄膜性質三者間之關聯性。
結果顯示影響電子密度最主要因素為微波功率,電子密度將隨微波功率增加而上升。電子密度越高,其沉積速率越高,但若是由氫氣增多所造成的電子密度上升,反而由於氫蝕刻效應使得沉積速率減緩。電子溫度與工作壓力有較明顯相關,於電子溫度3eV時,有最好的光暗電導比。由於ECR系統有著類似微波爐的駐波結構,所以根據共振磁場位置的不同,會有不同的電漿電位,將影響到R*與氫含量的大小。實驗結果証實,電漿氣體混合比例不同將對電子密度及薄膜特性有所影響,故過去Langmuir probe相關研究中採用純氫氣或者氬氣做為製程中電漿參數指標的方式顯有誤差,而本研究所自製可用於ECR磁場下之即時性薄膜製程電漿特性量測探針確有其價值。
Optical emission spectroscopy (OES) and homemade Langmuir probe are used for in-situ diagnosing the mixed H2-SiH4-Ar plasma characteristics in an electron cyclotron resonance chemical vapor deposition (ECR-CVD) system for hydrogenated amorphous silicon (a-Si:H) thin film process. The electron temperature (Te) and plasma density (Ne) are determined by Langmuir probe and the relative concentrations of plasma species are obtained from OES. By using a moveable Langmuir probe, the relation between distribution of plasma characteristics and a-Si:H film properties under various microwave power(700 - 1600W), working pressure(3 – 15mTorr), magnetic field and hydrogen dilution ratio are investigated in the scope of this research. Results indicate that high density H2-SiH4-Ar plasma can be obtained by increasing ECR microwave power even if the plasma density is near to the theoretical cut-off value. As the result of substrate heated by high concentration of electrons, the hydrogen precipitation occurs and hydrogen content is decreased by 46%. The result of Langmuir probe shows that electron temperature is rarely influenced by microwave power, and it also agrees well with OES measurement results. The R* and hydrogen concentration are measured using FTIR. The R* (2100 /2100+2000) shows the film’s property which is calculated with the strength of Si-H (2000cm-1) and Si-H2 (2100cm-1) peaks. The dominate factor about electron temperature is working pressure. The electron temperature decreases with increasing working pressure. In the same time, the R* increases with increasing pressure, but decreasing with hydrogen concentration. The best conductivity ratio can be received when electron temperature is 3eV. Since some standing waves could exist in the chamber, the position of ECR resonance zone would affect the plasma potential, R* and hydrogen concentration. When hydrogen dilution ratio (H2/SiH4) is adjusted from 0 to 24, hydrogen concentration can decrease thin film deposition rate effectively. When hydrogen concentration increases, the deposition rate becomes slower. Above all, this study demonstrates that the method for integrating in-situ Langmuir probe and OES can receive more reliable plasma characteristics in CVD process.
[1] 濱川圭弘 編著,太陽能光伏電池及其應用,張紅梅、崔曉華 譯,2004年。
[ 2] 熊紹珍、朱美芳 主編,太陽能電池基礎與應用,科學出版社,2010年。
[3] 顧鴻濤 著,太陽能電池元件導論,全威圖書,2009年。
[ 4]黃惠良等人 編著,太陽電池,初版,五南圖書,2009年。
[5]Hans-Gunther Wagenmann, Heinz Eschrich, Photovoltaik,葉開恒譯,西安交通大學出版社,2011年。
[6]S. Matsuo and Y. Adachi, Jpn. J. Appl. Phys., 21, L4, 1982.
[7]S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys., 22, L210, 1983.
[8]Masatoshi Kitagawa, Kentaro Setsune, Yoshio Manabe and Takashi Hirao, “Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method”, Japanese Journal of Applied Physics, Vol. 27, NO. 11, pp. 2026-2031, 1988.
[9]M. Zhang, Y. Nakayama, S. Nonoyama and K. Wakita, “Relationship between film quality and deposition rate for a-Si:H by ECR plasma CVD”, Journal of Non-crystalline Solids, Vol. 164-166, pp. 63-66, 1993.
[10]Royta Hidaka and Toru Yamaguchi, “Production of electron cyclotron resonance plasma for uniform deposition using a TE01 mode microwave”, American Institute of Physics, Vol. 65, pp. 1590-1593, 1994.
[11]S. P. Koirala , H. H. Abu-safe, S. L. Mensah, H. A. Naseem and M. H. Gordon, “Langmuir probe and optical emission studies in a radio frequency (rf) magnetron plasma used for the deposition of hydrogenated amorphous silicon”, Surface & Coatings Technology, Vol. 203, pp. 602-605, 2008.
[12] Satoshi Nakayama ,” ECR(electron cyclotron resonance) plasma for thin film technology”, Pure & Appl. Chem., Vol. 62, No. 9, pp. 1751-1756, 1990.
[13]張以忱 等編著,真空鍍膜技術,冶金工業出版社,2009年
[14]M. Quirk and J. Serda, Semiconductor Manufaceturing Technology, Ch11 Deposition, 2011.
[15]莊達人,VLSI製造技術,高立圖書有限公司,1996
[16]J. Venables, “Nucleation and Growth of Thin Films”, Rep. Prog. Phys., Vol. 47, pp. 399-459, 1984.
[17]M, Rosenberg, “Instabilities in dusty negative ion plasmas”, Phys. Scr., vol. 79, pp. 1, 2009.
[18]蕭宏(Hong Xiao)著,半導體製程技術導論 修訂版,羅正忠譯,台北市,台灣培生教育,民國98年。
[19]B. Chapman, Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[20]D. J. Griffiths, Introduction to Electrodynamics, third edition, Prentice Hall, U.S.A., 1998.
[21]S. M. Rossnagel, Jerome J. Cuomo, William D. Westwood, Handbook of plasma processing technology Fundamentals, William Dickson, 1937.
[22]F. F. Chen, Introduction to Plasma Physics and Controlled Fusion: Plasma Physics, Second edition, New York, 1984
[23]Wiki:http://zh.wikipedia.org/zh-tw/%E7%A3%81%E5%A0%B4
[24]H. M. Mott-Smith and I. Langmuir, “The Theory of Collectors in Gaseous Discharges”, Physical Review, Vol. 28, pp. 727-763, 1926.
[25]Philip Zhengyu Zheng, Langmuir probe for electron-cyclotron-resonance plasma, Texas Tech University, Thesis in Master of Science, 1990.
[26] Y. kawai, Y. Ueda, M. Morimoto, S. Hiejima and I. Katsumata, “Measurements of ECR silane plasma parameter”, Journal of Materials Processing Technology, Vol. 92-93, pp. 230-234, 1999.
[27]Francis F. Chen, ”Langmuir probe analysis for high density plasma”, Physics of Plasmas, Vol. 8, No. 6, pp. 3029-3041, 2001.
[28]甯逢春,微波電子磁旋諧(ECR)電漿源之研究,清華大學工程與系統科學系,1999年。
[29]R. H. Huddlestone and S. L. Leonard, Plasma diagnostic techniques, Academic Press, New York, 1965.
[30]Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion:Plasma Physics, Second edition, New York: Plenum Press, 1984.
[31]J. B. Daniel, F. H. Herbert, “A system for automagic electrical and optical characterization of microelectromechanical devices”, J MEMS, Vol. 8, pp. 473-482, 1999.
[32]薛晨陽 張文棟 等編著,半導體薄膜光譜學,科學出版社,2008年。
[33]Matsuda A, Takai M, Nishimoto T, et al. “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials & Solar Cells”, Vol. 78, pp. 3-26, 2003.
[34]Triska, A., D. Dennison and H. Fritzsche, Bull. Am., Phys. Soc.,Vol. 20, NO. 6, 1975.
[35]J. Robertson, J. Appl. Phys. Vol. 87, pp. 2608-2617, 2000.
[36]葉志鎮 等 編著,半導體薄膜技術與物理,浙江大學出版社,2008年。
[37]張濟忠 等 編著,現代薄膜技術,冶金工業出版社,2009年。
[38]王增福 等 編著,實用鍍膜技術,電子工業出版社,2008年。
[39]Moriaki Wakaki, Keiei kudo and Takehisa Shibuya 編著,光學材料手冊(Physical Properties and Data of Optical Materials),周海憲、程云芳譯,化學工業出版社,2010年。
[40]Warren L. Stutzman and Gary A. thiele, Antenna Theory and Design, New York: John Wiley & Sons, p.217, 1981.
[41]彭永福,以溶膠凝膠法製備SiO2薄膜作TFT閘極絕緣層材料,2009。
[42]莊達仁編著,VLSI製造技術,4版,高立圖書有限公司,1998年。
[43]李正中,薄膜光學與鍍膜技術,2版,藝軒圖書出版社,2001年。
[44]台灣日真電子束蒸鍍機操作手冊
[ 45]S. E. Lassig and J. D. Tucker, “Intermetal dielectric deposition by electron cyclotron resonance chemical vapor deposition (ECR CVD)”, Microelectronics Journal, Vol. 26, pp. 8-22, 1995.
[46]Guha s., et al. “Effect of mircrovoids on initial and light degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol. 61, pp. 1444-1446, 1992.
[47]Tomonori N., et al. “Amorphous silicon solar cell deposited at high growth rate”, Journal Non-Crystalline Solids, Vol. 299, pp. 1116-1122, 2002.
[ 48]Yoon S F, Tan K H, Zhang Q, et al. Effect of microwave power on the electron energy in an electron cyclotron resonance plasma. Vacuum, 2001, 61:29.
[49]魏寶文,離子的噴泉,暨南大學出版社,2002年
[50]楊德仁,太陽電池材料,化學工業出版社,2011年。
[ 51]Stephen M. Rossnagel, J. J. Cuomo, William Dickson Westwood, Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions, Noyes Publications, page:285, 1990.
[52]Oleg A. Popov, High Density Plasma Sources: Design, Physics, and Performance, Noyes Publications, page: 314, 1995.
[53]Nobuyasu Sato, Yoshiaki Kawashima and Hiroaki Tagashira, “Electron Swarm Parameters in SiH4/H2”, Ann. Rep. Fac. Educ., Iwate Univ., Vol. 49 No.1, 69-78, 1989.