| 研究生: |
徐偉恩 Wei-En Hsu |
|---|---|
| 論文名稱: |
基於C-arm影像之骨髓內釘遠端固定用鑽孔導航系統 C-arm Image Based Drilling Navigation System for Distal Locking of Intramedullary Nails |
| 指導教授: |
曾清秀
Ching-Shiow Tseng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 手術導航 、骨髓內釘 、遠端固定 、機器人輔助手術 |
| 外文關鍵詞: | Surgical navigation, Intramedullary nail, Distal locking, Robotic assisted surgery |
| 相關次數: | 點閱:31 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
骨髓內釘固定術為長骨骨折的主要治療方式之一,骨髓內釘經由股骨頸旁植入骨髓腔後貫穿斷骨,並於兩端以螺絲將其與斷骨固定。但在植入過程中骨釘受骨髓腔形狀影響形變,使遠端(膝蓋側)螺絲固定孔方位改變,必須靠拍攝大量C-arm X光影像來確認其位置,造成大量輻射劑量與拉長手術時間的問題。本研究目的為解決遠端固定孔的定位與提供鑽孔輔助,所開發的遠端固定孔定位演算法,只利用一張C-arm影像即可計算出兩個遠端固定孔的方向與位置。而鑽孔輔助則是利用所開發的導航軟體引導主動或被動式鑽孔輔具對準計算出的固定孔方向,使醫師可以快速將鑽孔器械對準固定孔,並在鑽孔過程維持鑽孔路徑的穩定。經由65組的真實骨釘定位誤差實驗,結果固定孔中心位置誤差平均為1.06毫米、其軸線方向的平均角度誤差則是2.89°,另外也進行了10個鑽孔導航案例,都可以成功鑽穿固定孔。被動式輔具基於定位演算法結果進行可用性測試,顯示平均60.2秒完成輔助鑽孔對位,可增加對位效率與穩定性。主動式機械臂定位則達到平均位置誤差2.31毫米、方向誤差2.84 (36例),所有案例皆能成功鑽孔。上述驗證實驗證明本研究提出之導航系統可以有效解決骨髓內釘遠端固定術的鑽孔定位精準度、手術耗時與大量輻射暴露的問題。
Intramedullary nailing is a common treatment for long bone shaft fracture. In the process of intramedullary nail implantation, the intramedullary nail may become deformed due to the shape of the medullary cavity. Thus, the surgeon requires to take a large number of C-arm X-ray images to validate the positions and directions of locking holes. In this study, we developed a positioning method for the positioning of distal locking holes. This method calculates the center positions and axial directions of parallel distal locking holes based on only one intraoperative C-arm image. A passive and an active (robot arm) assistive devices integrated with a navigation system for prompt positioning of distal locking holes and stable guidance and support of the drill are also introduced. To validate the proposed method, a total of 65 positioning tests were proceeded. The average center position error was 1.06 mm while the average axial direction error was 2.89°. Also, 10 sawbone drilling tests were conducted, in which the drill passed through the locking holes successfully. Under the guidance of the navigation system, the users could manually adjust the passive device to align the positioning probe with the locking hole within an average 60.2 seconds based on 20 test cases. In 36 test cases, the active device automatically aligned the positioning probe with the locking hole within an average error of 2.31 mm in position and 2.84° in direction. The experiment results indicate that the proposed positioning method and passive/active drilling assistive devices can accurately position the locking holes and significantly reduce operation time and radiation exposure.
﹝1﹞ C. Krettek, J. Mannss, T. Miclau, P. Schandelmaier, I. Linnemann and H. Tscherne. “Deformation of femoral nails with intramedullary insertion,” Journal of Orthopaedic Research, Vol. 16, 5, 1998, pp. 572-575, http://doi.org/10.1002/jor.1100160508.
﹝2﹞ S. Skjeldal and S. Backe. “Interlocking medullary nails--radiation doses in distal targeting,” Archives of orthopaedic and traumatic surgery, Vol. 106, 3, 1987, pp. 179-181.
﹝3﹞ C. Krettek, B. Konemann, T. Miclau, R. Kolbli, T. Machreich, A. Kromm and H. Tscherne. “A new mechanical aiming device for the placement of distal interlocking screws in femoral nails,” Archives of orthopaedic and traumatic surgery, Vol. 117, 3, 1998, pp. 147-152.
﹝4﹞ D. Pennig, E. Brug and H. L. Kronholz. “A new distal aiming device for locking nail fixation,” Orthopedics, Vol. 11, 12, 1988, pp. 1725-1727.
﹝5﹞ C. Krettek, B. Konemann, T. Miclau, R. Kolbli, T. Machreich and H. Tscherne. “A mechanical distal aiming device for distal locking in femoral nails,” Clinical Orthopaedics and Related Research®, Vol. 364, 1999, pp. 267-275.
﹝6﹞ A. Bonshahi, A. Cowey and R. Vhadra. “A simple distal interlocking aid for intramedullary nails,” Journal of postgraduate medicine, Vol. 49, 1, 2003, pp. 99-100.
﹝7﹞ M. Windolf, J. Schroeder, L. Fliri, B. Dicht, M. Liebergall and R. G. Richards. “Reinforcing the role of the conventional C-arm-a novel method for simplified distal interlocking,” BMC musculoskeletal disorders, Vol. 13, 1, 2012, pp. 8, https://doi.org/10.1186/1471-2474-13-8.
﹝8﹞ B. Diotte, P. Fallavollita, L. Wang, S. Weidert, E. Euler, P. Thaller and N. Navab. “Multi-Modal Intra-Operative Navigation During Distal Locking of Intramedullary Nails,” IEEE Transactions on Medical Imaging, Vol. 34, 2, 2015, pp. 487-495, http://doi.org/10.1109/TMI.2014.2361155.
﹝9﹞ Z. Gugala, A. Nana and R. W. Lindsey. “Tibial intramedullary nail distal interlocking screw placement: comparison of the free-hand versus distally-based targeting device techniques,” Injury, Vol. 32, 2001, pp. 21-25, https://doi.org/10.1016/S0020-1383(01)00115-2.
﹝10﹞ M. Hoffmann, M. Schröder, W. Lehmann, M. Kammal, J. M. Rueger and A. H. Ruecker. “Next generation distal locking for intramedullary nails using an electromagnetic X-ray-radiation-free real-time navigation system,” Journal of Trauma and Acute Care Surgery, Vol. 73, 1, 2012, pp. 243-248.
﹝11﹞ Y.-J. Tseng, W. Chu and W.-C. Chu. “Intramedullary Endo-Transilluminating Device for Interlocking Nailing Procedures,” Journal of Medical Devices, Vol. 9, 3, 2015, http://doi.org/10.1115/1.4030543.
﹝12﹞ E. J. Hazan and L. Joskowicz. “Computer-assisted image-guided intramedullary nailing of femoral shaft fractures,” Techniques in Orthopaedics, Vol. 18, 2, 2003, pp. 191-200.
﹝13﹞ R. Hofstetter, M. Slomczykowski, M. Sati and L.-P. Nolte. “Fluoroscopy as an imaging means for computer-assisted surgical navigation,” Computer Aided Surgery, Vol. 4, 2, 1999, pp. 65-76.
﹝14﹞ T. Ohe, K. Nakamura, T. Matsushita, M. Nishiki, N. Watanabe and K. Matsumoto. “Stereo fluoroscopy-assisted distal interlocking of intramedullary nails,” Journal of orthopaedic trauma, Vol. 11, 4, 1997, pp. 300-303.
﹝15﹞ G. Zheng and X. Zhang. “A Novel Parameter Decomposition Approach for Recovering Poses of Distal Locking Holes from Single Calibrated Fluoroscopic Image,” SCIA 2007, Berlin, Heidelberg, 2007, pp. 364-373.
﹝16﹞ C.-J. Chang, G.-L. Lin, A. Tse, H.-Y. Chu and C.-S. Tseng. “Registration of 2D C-Arm and 3D CT Images for a C-Arm Image-Assisted Navigation System for Spinal Surgery,” Applied Bionics and Biomechanics, Vol. 2015, 2015, pp. 1-9, https://doi.org/10.1155/2015/478062.
﹝17﹞ W.-E. Hsu, C.-H. Yu, C.-J. Chang, H.-K. Wu, T.-H. Yu and C.-S. Tseng. “C-arm Image-Based Surgical Path Planning Method for Distal Locking of Intramedullary Nails,” Applied Bionics and Biomechanics, Vol. 2018, 2018, pp. 1-10, https://doi.org/10.1155/2018/4530386.
﹝18﹞ J. D. Goodall. “An image intensifier laser guidance system for the distal locking of an intramedullary nail,” Injury, Vol. 22, 4, 1991, pp. 339, https://doi.org/10.1016/0020-1383(91)90026-B.
﹝19﹞ M. Windolf, J. Schroeder, L. Fliri, B. Dicht, M. Liebergall and R. G. Richards. “Reinforcing the role of the conventional C-arm - a novel method for simplified distal interlocking,” BMC Musculoskeletal Disorders, Vol. 13, 1, 2012, Article number: 8, http://doi.org/10.1186/1471-2474-13-8.
﹝20﹞ M.-Y. Lee, C.-H. Kuo and S.-S. Hung. “Implementation of a sound-guided navigation system for tibial closed interlocking nail fixations in orthopedics,” Journal of Medical and Biological Engineering, Vol. 24, 2004, pp. 147-154.
﹝21﹞ W. Chu, J. Wang, S.-T. Young and W. C. Chu. “Reducing radiation exposure in intra-medullary nailing procedures: Intra-medullary endo-transilluminating (iMET),” Injury, Vol. 40, 10, 2009, pp. 1084-1087, https://doi.org/10.1016/j.injury.2009.04.008.
﹝22﹞ O. Moreschini, V. Petrucci and R. Cannata. “Insertion of distal locking screws of tibial intramedullary nails: a comparison between the free-hand technique and the SURESHOT™ Distal Targeting System,” Injury, Vol. 45, 2, 2014, pp. 405-407.
﹝23﹞ C. Neatpisarnvanit and J. Suthakorn. “Intramedullary nail distal hole axis estimation using Blob analysis and Hough transform,” 2006 IEEE Conference on Robotics, Automation and Mechatronics, 2006, pp. 1-6.
﹝24﹞ W. Viant, R. Phillips, J. Griffiths, A. Mohsen, T. Cain, M. Karpinski and K. Sherman. “A computer assisted orthopaedic system for distal locking of intramedullary nails,” Proc. of mediMEC, 1995, pp. 86-91.
﹝25﹞ W. Viant, R. Phillips, J. Griffiths, T. Ozanian, A. Mohsen, T. Cain, M. Karpinske and K. Sherman. “A computer assisted orthopaedic surgical system for distal locking of intramedullary nails,” Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, Vol. 211, 4, 1997, pp. 293-300.
﹝26﹞ Y. Zhu, R. Phillips, J. G. Griffiths, W. Viant, A. Mohsen and M. Bielby. “Recovery of distal hole axis in intramedullary nail trajectory planning,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 216, 5, 2002, pp. 323-332.
﹝27﹞ S. Malek, R. Phillips, A. Mohsen, W. Viant, M. Bielby and K. Sherman. “Computer assisted orthopaedic surgical system for insertion of distal locking screws in intra-medullary nails: a valid and reliable navigation system,” The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 1, 4, 2005, pp. 34-44, http://doi.org/10.1002/rcs.54.
﹝28﹞ T. Leloup, W. El Kazzi, F. Schuind and N. Warzée. “A novel technique for distal locking of intramedullary nail based on two non-constrained fluoroscopic images and navigation,” IEEE transactions on medical imaging, Vol. 27, 9, 2008, pp. 1202-1212.
﹝29﹞ Z. Yaniv and L. Joskowicz. “Precise robot-assisted guide positioning for distal locking of intramedullary nails,” IEEE transactions on medical imaging, Vol. 24, 5, 2005, pp. 624-635.
﹝30﹞ 陳佩君: 〈應用 C-arm 影像輔助手術導引系統於骨髓內釘遠端固定〉, 碩士論文, 國立中央大學, 民國102年12月.
﹝31﹞ J. T. Liang, T. Doke, S. Onogi, S. Ohashi, I. Ohnishi, I. Sakuma and Y. Nakajima. “A fluorolaser navigation system to guide linear surgical tool insertion,” International journal of computer assisted radiology and surgery, Vol. 7, 6, 2012, pp. 931-939.
﹝32﹞ M. Panzica, E. M. Suero, R. Westphal, M. Citak, E. Liodakis, N. Hawi, M. Petri, C. Krettek and T. Stuebig. “Robotic distal locking of intramedullary nailing: Technical description and cadaveric testing,” The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 13, 4, 2017, e1831, http://doi.org/10.1002/rcs.1831.
﹝33﹞ S. Weidert, L. Wang, J. Landes, P. Sandner, E. M. Suero, N. Navab, C. Kammerlander, E. Euler and A. von Der Heide. “Video-augmented fluoroscopy for distal interlocking of intramedullary nails decreased radiation exposure and surgical time in a bovine cadaveric setting,” The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 15, 4, 2019, e1995, http://doi.org/10.1002/rcs.1995.
﹝34﹞ H. J. Marcus, T. P. Cundy, D. Nandi, G.-Z. Yang and A. Darzi. “Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review,” European Spine Journal, Vol. 23, 2, 2014, pp. 291-297, http://doi.org/10.1007/s00586-013-2879-1.
﹝35﹞ M. Lefranc, C. Capel, A. S. Pruvot, A. Fichten, C. Desenclos, P. Toussaint, D. Le Gars and J. Peltier. “The Impact of the Reference Imaging Modality, Registration Method and Intraoperative Flat-Panel Computed Tomography on the Accuracy of the ROSA® Stereotactic Robot,” Stereotactic and Functional Neurosurgery, Vol. 92, 4, 2014, pp. 242-250, http://doi.org/10.1159/000362936.
﹝36﹞ M. Lefranc and J. Peltier. “Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures,” Expert Review of Medical Devices, Vol. 13, 10, 2016, pp. 899-906, http://doi.org/10.1080/17434440.2016.1236680.
﹝37﹞ S. Kuang, K.-S. Leung, T. Wang, L. Hu, E. Chui, W. Liu and Y. Wang. “A novel passive/active hybrid robot for orthopaedic trauma surgery,” The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 8, 4, 2012, pp. 458-467, http://doi.org/10.1002/rcs.1449.
﹝38﹞ R. Fahrig, M. Moreau and D. W. Holdsworth. “Three-dimensional computed tomographic reconstruction using a C-arm mounted XRII: Correction of image intensifier distortion,” Medical Physics, Vol. 24, 7, 1997, pp. 1097-1106, http://doi.org/10.1118/1.598013.
﹝39﹞ S. Gorges, E. Kerrien, M.-O. Berger, Y. Trousset, J. Pescatore, R. Anxionnat and L. Picard. “Model of a Vascular C-Arm for 3D Augmented Fluoroscopy in Interventional Radiology,” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, Berlin, Heidelberg, 2005, pp. 214-222.
﹝40﹞ J. Wang and T. J. Blackburn. “The AAPM/RSNA Physics Tutorial for Residents: X-ray Image Intensifiers for Fluoroscopy 1,” Radiographics, Vol. 20, 5, 2000, pp. 1471-1477.
﹝41﹞ 吳吉春: 〈基於 C-arm 影像的手術導引定位〉, 碩士論文, 國立中央大學, 民國101年6月.
﹝42﹞ A. W. Fitzgibbon and R. B. Fisher, "A buyer's guide to conic fitting," University of Edinburgh, Department of Artificial Intelligence, 1996.
﹝43﹞ J. Sklansky. “Finding the convex hull of a simple polygon,” Pattern Recognition Letters, Vol. 1, 2, 1982, pp. 79-83, https://doi.org/10.1016/0167-8655(82)90016-2.