| 研究生: |
江維祥 Jiang, Wei-Hsiang |
|---|---|
| 論文名稱: |
茜紅(Alizarin)與靛藍(Indigo)之 二次鋰電池製作及效率探討 |
| 指導教授: |
李文献
Li, Wen-Hsien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 茜紅 、靛藍 、二次鋰電池 、鋰電池 |
| 外文關鍵詞: | Alizarin, Indigo, Secondary lithium battery, lithium battery |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰電池的使用自二十一世紀以來規模已經是越加地廣泛與普及,降低其製造成本與對環境所造成的損害是近年來多方努力研究的主要方向之一。本實驗嘗試兩種結構相似且在人類歷史上已被運用數千年之久的天然染料,茜紅與靛藍,將其作為材料製作成鋰電池的電極並探討其效率,主要分成兩大部分。
第一部份為對材料進行探討,利用X光繞射來研究樣品,再經由GSAS分析樣品,得出茜紅與靛藍的粒徑大小並確定其實際結構。
第二個部分為製作成電池並對於電池充放電循環效率進行嘗試與探討,第一個嘗試為改變電極本身基底的金屬極片材料,比較電池在銅箔與鋁箔不同電極基底材料下效率的差異。第二個嘗試為在極片製作時額外添加鎳奈米顆粒,將鎳奈米顆粒與樣品均勻混和製作成電池電極,比較電池在有無摻雜鎳奈米顆粒下效率的差異。
經結果可看出使用銅箔作為電極基底的材料時與鋁箔相比而言,大致上對茜紅與靛藍鋰電池充放電表現都有提升的效果,且不會干擾材料進行電化學反應,然而在使用鋁箔作為電極基底的材料時會干擾靛藍進行電化學反應。接著以摻雜與未摻雜相比而言,大致上對茜紅與靛藍鋰電池充放電表現都有提升的效果,然而在鋁箔材料下添加鎳奈米顆粒對於茜紅鋰電池充放電表現則是有降低的效果。
The use of lithium batteries has become more widespread and popular since the 21st century, and reducing its manufacturing costs and damage to the environment has been one of the main directions of many efforts in recent years. In this experiment, we tried two natural dyes that are similar in structure and have been used for thousands of years in human history, alizarin and indigo, and used them as materials to make lithium battery electrodes and explore their efficiency. They are mainly divided into two parts.
The first part is to discuss the material, use X-ray diffraction to study the sample, and then analyze the sample through GSAS to obtain the particle size of alizarin and indigo moreover determine the actual structure.
The second part is to make a battery and try as well as look into the battery charge and discharge cycle efficiency. The first attempt is to change the metal foil material of the electrode itself, and compare the efficiency of the battery under the different electrode substrate materials of copper foil and aluminum foil. The second attempt is to dope nickel nanoparticles during the production of the battery electrode, uniformly mix the nickel nanoparticles with the sample to make a battery electrode, and compare the efficiency of the battery with or without nickel nanoparticles.
The results show that when copper foil is used as the electrode , compared with aluminum foil, it generally improves the charging and discharging performance of alizarin and indigo lithium batteries, and does not interfere with the electrochemical reaction of the sample. However, when aluminum foil is used as the electrode, it will interfere with the electrochemical reaction of indigo. Then compared with the doped and undoped, the charging and discharging performance of the alizarin and indigo lithium batteries are generally improved. However, in the case of aluminum foil electrodes, doped nickel nanoparticles have a lowering effect on the performance of the alizarin lithium battery.
參考文獻
[1] C. Graebe and C. Liebermann (1868) "Ueber Alizarin, und Anthracen" (On alizarin and anthracene), Berichte der Deutschen chemischen Gesellschaft zu Berlin, 1 : 49-51.
[2] Puchtler, H.; Meloan, S. N.; Terry, M. S. (1969). "On the History and Mechanism of Alizarin Red S Stains for Calcium". The Journal of Histochemistry and Cytochemistry. 17 (2): 110–124. doi:10.1177/17.2.110. PMID 4179464.
[3] Sun, C., Li, Y., Han, J., Cao, B., Yin, H., & Shi, Y. (2019). "Enhanced photoelectrical properties of alizarin-based natural dye via structure modulation". Solar Energy, 185, 315–323.
doi:10.1016/j.solener.2019.04.078.
[4] Ding, Y., Li, Y., & Yu, G. (2016). "Exploring Bio-inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study". Chem, 1(5), 790–801.
doi:10.1016/j.chempr.2016.09.004.
[5] Cyrański, M. K., Jamróz, M. H., Rygula, A., Dobrowolski, J. C., Dobrzycki, Ł., & Baranska, M. (2012). "On two alizarin polymorphs". CrystEngComm, 14(10), 3667. doi:10.1039/c2ce06063a.
[6] Adolf Baeyer (1883) "Ueber die Verbindungen der Indigogruppe" [On the compounds of the indigo group], Berichte der Deutschen chemischen Gesellschaft zu Berlin, 16 : 2188-2204 ; see especially p. 2204.
[7] Irimia-Vladu, Mihai; Głowacki, Eric D.; Troshin, Pavel A.; Schwabegger, Günther; Leonat, Lucia; Susarova, Diana K.; Krystal, Olga; Ullah, Mujeeb; Kanbur, Yasin; Bodea, Marius A.; Razumov, Vladimir F.; Sitter, Helmut; Bauer, Siegfried; Sarıçiftçi, Niyazi Serdar (2012). "Indigo - A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits". Advanced Materials. 24 (3): 375–80. doi:10.1002/adma.201102619. PMID:22109816.
[8] Kettner, F., Hüter, L., Schäfer, J., Röder, K., Purgahn, U., & Krautscheid, H. (2011). "Selective crystallization of indigo B by a modified sublimation method and its redetermined structure". Acta Crystallographica Section E Structure Reports Online, 67(11), o2867–o2867. doi:10.1107/s1600536811040220.
[9] Liedel, C. (2020). "Sustainable Battery Materials from Biomass". ChemSusChem. doi:10.1002/cssc.201903577.
[10] Deunf, E., Poizot, P., & Lestriez, B. (2019). "Aqueous Processing and Formulation of Indigo Carmine Positive Electrode for Lithium Organic Battery". Journal of The Electrochemical Society, 166(4), A747–A753. doi:10.1149/2.0941904jes.
[11] Ding, Y., Li, Y., & Yu, G. (2016). "Exploring Bio-inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study". Chem, 1(5), 790–801. doi:10.1016/j.chempr.2016.09.004 .
[12] Wolfgang Beck & Karlheinz Sünkel (2020). "Metal Complexes of Indigo and of Some Related Ligands". Zeitschrift für anorganische und allgemeine Chemie, 2020, 646, 248–255. doi:10.1002/zaac.201900363.
[13] photo courtesy of Pieter Kuiper via en.wikipedia.org/.
[14] Jonathan Cowen (2014). "X-ray Diffraction and EBSD" via Swagelok Center for the Surface Analysis of Materials, Case School of Engineering, Case Western Reserve University.
[15] Li, W.-H., & Lee, C.-H. (2017). "Spin Polarization and Small Size Effect in Bare Silver Nanoparticles. " Complex Magnetic Nanostructures, 195–224. doi:10.1007/978-3-319-52087-2_6.
[16] Peled, E. (1979). "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. " Journal of The Electrochemical Society, 126(12), 2047. doi:10.1149/1.2128859
[17] Verma, P., Maire, P., & Novák, P. (2010). "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. " Electrochimica Acta, 55(22), 6332–6341. doi:10.1016/j.electacta.2010.05.072
[18] Winter, Martin (2009). "The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries. " Zeitschrift für Physikalische Chemie, 223(10-11), 1395–1406. doi:10.1524/zpch.2009.6086
[19] K.R. Mahanthesha, B.E. Kumara Swamy, Umesh Chandra, Yadav D. Bodke, K. Vasanth Kumar Pai and B.S Sherigara (2009). "Cyclic Voltammetric Investigations of Alizarin at Carbon Paste Electrode using Surfactants". Int. J. Electrochem. Sci., 4 (2009) 1237 – 1247.
[20] Vanýsek, Petr (2007). " Electrochemical Series", in Handbook of Chemistry and Physics: 88th Edition. (Chemical Rubber Company).
[21] Fain, V. Y., Zaitsev, B. E., & Ryabov, M. A. (2004). "Metal Complexes with Alizarin and Alizarin Red S: Electronic Absorption Spectra and Structure of Ligands". Russian Journal of Coordination Chemistry, 30(5), 365–370. doi:10.1023/b:ruco.0000026008.98495.51.
[22] DelMedico, A., Fielder, S.S., Lever, A.B.P., and Pietro, W.J., Inorg (1995). Chem., 1995, vol. 34, no. 6, p. 1507.
[23] DelMedico, A., Auburn, P.R., Dodsworth, E.S., et al., Inorg (1994). Chem., 1994, vol. 33, no. 8, p. 1583.
[24] Fain, V.Ya., Zaitsev, B.E., and Ryabov, M.A (2003)., Koord. Khim., 2003, vol. 29, no. 5, p. 395.
[25] Fain, V.Ya., Zaitsev, B.E., and Ryabov, M.A (2004)., Koord. Khim., 2004, vol. 30, no. 5, p. 385.
[26] Fernández-Sánchez, C., & Costa-Garcı́a, A. (2000). "Voltammetric studies of indigo adsorbed on pre-treated carbon paste electrodes". Electrochemistry Communications, 2(11), 776–781. doi:10.1016/s1388-2481(00)00117-x.
[27] K. Kunz, Ber. Dtsch (1930). Chem. Ges. 1930, 63, 2600.