跳到主要內容

簡易檢索 / 詳目顯示

研究生: 雷米
Remi Lehu
論文名稱: Record of extreme events in marine sediments, offshore eastern Taiwan
指導教授: 許樹坤
Shu-kun Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 317
中文關鍵詞: 台灣極端事件重力流濁積岩地震
外文關鍵詞: marine sediments, sedimentary gravity deposits
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣是世界上最活躍的年輕的山岳帶之一。自二十世紀初至今已有超過二十次的七級(Mw7)以上地震發生於此。然而就超過八級(Mw8)以上的大型地震問題仍存有爭議。在本課題中利用長期記錄為突破口去評價大地震的狀況。同時本課題也藉由近年來發展迅速的,通過研究重力沉積記錄為基礎的子水古地震學中相關理論去探討歷史長期地震活動情況。

    本課題的第一個方向探討了台灣東部的沉積體系。理解沉積形態特徵,沉積相和研究海底斜坡的演化進程,同時注意近期內的沉積影響因素。它們對沉積體系分析尤為重要。我們的研究結果表明當地有許多不同的沉積體係正在形成,並對台灣東側岸外坡產生影響。同時濁流作為侵蝕作用的主要因素,佔據了當地沉積記錄的60%。濁流主要受到構造運動和氣候運動這兩個重要控制因素影響。當濁流和構造運動相結合,可導致地震晃動,並將形成內陸斜坡盆地。在氣候因素的影響下,濁流可能在盆地及內陸河域導致特大洪澇或颱風。

    第二個方向應用古地震學中兩個時間軸上以濁積岩記錄為基礎的方法。首先我們通過測試並調整濁流沉積物和地震形成之間的對應關聯。一旦校准後我們將時間序列前調至最近的三次濁積岩層形成時間,分別為:公元2001+-3,公元1950+-5以及公元1928+-8。我們將地下加速度,震級,震源通過經驗關係相連,分別驗證了沉積岩和三個地震的聯繫:2013年12月10日成功地震(Mw6.8),1951年11月24日台東地震(Mw 7.1 )以及1935年9月4日綠島地震(Mw 7.0)。年代測定以及年齡建模為過去的3000年提供了極端氣候事件年代表。通過對比不同觸發因素對濁流形成的影響,我們得出結論,地震是濁流形成的主要觸發機制。我們還猜測整體大陸邊緣與同步濁流事件共同作用,從而導致了公元前50年至公元600年間的8級大地震。這項研究為全新世極端事件重新排序做了良好開端。


    Taiwan is a young mountain belt, known as one of the most active area in the world. Since the beginning of the
    20th century more than twenty  Mw7 earthquakes have struck the island. However, the occurrence of larger
    events (Mw8) is still a matter of debate. In this framework it is of key importance to obtain longer record
    in order to evaluate the occurrence of large past earthquakes. The sub-aqueous paleoseismology, based on the
    record of the sedimentary gravity deposits, appears as a serious alternative to approach this thematic and is a
    rapidly advancing field that has the potential to illuminate the long-term history of seismicity.
    The first part of this work was to investigate the present sedimentary systems off east Taiwan, essential to
    understand the morphosedimentary features, sedimentary facies and processes governing the evolution of the
    submarine slope, and the controlling factors of the recent sedimentation. Our results showed that the offshore
    slope east Taiwan is affected by a variety of sedimentary systems and processes, and that turbidity currents
    appear as the main erosional processes covering nearly 60% of the sedimentary record. Turbidity currents are
    generated by distinct controlling factors such as tectonic and climatic activity that enabled us to define two
    end-members relative to turbidity currents initiation: Turbidity currents preconditioned by tectonic activity and
    triggered by earthquakes shaking and likely deposited into intra-slope basin and turbidity currents driven by
    climatic activity such as extreme floods or typhoons, generated in basin directly connected with onland rivers.
    The second part consisted to apply a paleoseismic approach, based on turbidites record, at two time-scales. First,
    we tested and validated the method by correlating turbidites deposits with instrumental earthquakes. Then, once
    calibrated we extended the time-series back in time. We dated the three most recent turbidites layers circa AD
    2001  3, AD 1950  5 and AD 1928  8. Using empirical relationship that link peakground acceleration,
    distance and magnitude to calibrate the seismic sources, we correlate these three turbidites with instrumental
    earthquakes: the Chengkong Earthquake 12/10/2003 (Mw 6.8), the 11/24/1951 Taitung Earthquake (Mw 7.1)
    and the 9/4/1935 Lutao Earthquake (Mw 7.0) respectively. Dating and age modeling provided a chronology of
    extreme events since the last 3000 years. Applying criteria to discriminating the different triggering mechanisms
    for turbidity current generation, we propose that earthquakes are the main triggering mechanisms. We also
    estimate that synchronous turbidite events correlated over the whole margin were triggered by a Mw8 earthquake
    between 50 BC and 600 AD. This work represents a good starting-point for future investigations in order to better
    assess Holocene time series of extreme events.

    1 Introduction 1 1.1 Research motivations and objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 An introduction to the geology of Taiwan . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Regional climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.4 Seismicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I Sedimentary processes offshore eastern Taiwan 17 2 Background 19 2.1 Submarine sedimentary gravity processes and deposits . . . . . . . . . . . . . . 21 2.1.1 Mass slide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.2 Gravity flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2.1 Laminar flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2.2 Turbulent flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.2.3 Evolution and transformation of gravity flows . . . . . . . . . . 28 2.1.3 Turbiditic systems architecture . . . . . . . . . . . . . . . . . . . . . . . 29 2.1.3.1 Canyons and gullies . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.3.2 Channels-levees complexes . . . . . . . . . . . . . . . . . . . . . 32 2.1.3.3 Lobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.4 Controling factors of turbiditic systems . . . . . . . . . . . . . . . . . . . 34 2.1.5 Initiation of turbidity currents . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Study area and coring strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Coring sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Deep-sea sedimentation offshore eastern Taiwan: facies and processes characterization 51 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Regional settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Geological context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Regional climate, drainage systems and sediment discharge . . . . . . . . 56 3.2.3 Submarine morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.4 Seismic activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Materials ans methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.1 Bathymetry, acoustic and seismic data . . . . . . . . . . . . . . . . . . . 58 3.3.2 Cores material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Description of sedimentary features revealed by geophysical data . . . . . . . . . 58 3.4.1 The southern sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 X CONTENTS 3.4.2 The central sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.3 The northern sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5 Characterization and classification of lithofacies . . . . . . . . . . . . . . . . . . 63 3.5.1 End-members lithofacies . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5.2 Turbidites facies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.6 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6.1 Erosional sedimentary processes . . . . . . . . . . . . . . . . . . . . . . . 66 3.6.2 Control factor and sediment provenance of turbidity currents . . . . . . . 70 3.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 II Testing a paleoseismological approach offshore eastern Taiwan 89 4 Background 91 4.1 Turbidites deposits as a marker of paleoseismicity . . . . . . . . . . . . . . . . . 93 4.2 Datings proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 The last century sedimentation: 210Pb and 137Cs proxies . . . . . . . . . 96 4.2.2 Radiocarbon 14C: Dating, age calibration and reservoir age . . . . . . . . 99 5 Historical reconstruction of paleo-earthquakes using 210Pb, 137Cs and 241Am turbidite chronology and radiocarbon reservoir age estimation off East Taiwan103 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2 Setting and analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.1 Identifying and dating turbidite layers in core . . . . . . . . . . . . . . . 109 5.3.2 Linking turbidites and earthquakes events . . . . . . . . . . . . . . . . . 111 5.3.3 Modern reservoir age estimation . . . . . . . . . . . . . . . . . . . . . . . 111 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.5 Aknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6 2,700 years of seismicity recorded offshore eastern Taiwan by turbidites deposits 123 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2 Regional settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2.1 Geological and seismic context . . . . . . . . . . . . . . . . . . . . . . . . 129 6.2.2 Sedimentology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.1 Core site location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.2 Cores analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.3 Criteria for turbidites events identification and delimitation . . . . . . . . 131 6.3.4 Radiometric datings and age model . . . . . . . . . . . . . . . . . . . . . 131 6.3.5 Event’s terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.4 Turbidites identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Chronostratigraphy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.6.1 Turbidites correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.6.2 From turbidites to earthquakes . . . . . . . . . . . . . . . . . . . . . . . 138 CONTENTS XI 6.6.3 Estimation of earthquake sources and magnitudes, and recurrence intervals 141 6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 7 A ∼3,000 years-old super-event revealed by marine deposits east of Taiwan: paleo- landslide, earthquake, tsunami or typhoon ? 163 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.2 Geological, oceanic and atmospheric setting . . . . . . . . . . . . . . . . . . . . 167 7.3 Core sampling strategy, data and results . . . . . . . . . . . . . . . . . . . . . . 171 7.3.1 Sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.3.3 Core description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.3.4 Age model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.4.1 Age of shells vs age of sediment . . . . . . . . . . . . . . . . . . . . . . . 175 7.4.2 Possible origin of the anomalous deposit . . . . . . . . . . . . . . . . . . 175 7.4.3 Hydro-dynamical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Tsunami generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Propagation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Run-up height estimations . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8 General conclusions 195 8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Bibliography 205 Appendices 227 A Morphosedimentary facies map offshore east Taiwan 229 B Technical sheets 233 C Coring site KS06: Morphology and core analysis 241 D Coring sites KAS03/KR03: Morphology and core analysis 253 E Coring sites KS08/KS09: Morphology and core analysis 263 F 14C and 210Pb sampling 273 G The P-Sequence in OxCal 277

    Abe, Y. (1938). The research of locality names in taiwan. Sugita Publication, Tokyo, 300 pp.
    (in japanese), page 300 pp. 168
    Adams, J. (1990). Paleoseismicity of the cascadia subduction zone: Evidence from turbidites off
    the oregon-washington margin. Tectonics, 9(4):569–583. 4, 70, 93, 125, 136
    Ando, M. (1975). Source mechanisms and tectonic significance of historical earthquakes along
    the nankai trough, japan. Tectonophysics, 27(2):119–140. 166
    Ando, M., Nakamura, M., and Lin, C. (2013). Tsunami folklore and possible tsunami source on
    the eastern coast of taiwan. terr. Atmos. Ocean. 168
    Appleby, P. and Oldfield, F. (1992). Applications of lead-210 to sedimentation studies. In
    Uranium-series disequilibrium: applications to earth, marine, and environmental sciences. 2.
    ed. 96
    Appleby, P., Richardson, N., and Nolan, P. (1991). 241am dating of lake sediments. In Environmental
    History and Palaeolimnology, pages 35–42. Springer. 98
    Arai, K., Naruse, H., Miura, R., Kawamura, K., Hino, R., Ito, Y., Inazu, D., Yokokawa, M.,
    Izumi, N., Murayama, M., et al. (2013). Tsunami-generated turbidity current of the 2011
    tohoku-oki earthquake. Geology, 41(11):1195–1198. 175
    Araoka, D., Yokoyama, Y., Suzuki, A., Goto, K., Miyagi, K., Miyazawa, K., Matsuzaki, H., and
    Kawahata, H. (2013). Tsunami recurrence revealed by porites coral boulders in the southern
    ryukyu islands, japan. Geology, 41(8):919–922. 167
    Arnaud, F., Lignier, V., Revel, M., Desmet, M., Beck, C., Pourchet, M., Charlet, F., Trentesaux,
    A., and Tribovillard, N. (2002). Flood and earthquake disturbance of 210pb geochronology
    (lake anterne, nw alps). Terra Nova, 14(4):225–232. 107, 110
    Arzola, R. G., Wynn, R. B., Lastras, G., Masson, D. G., and Weaver, P. P. (2008). Sedimentary
    features and processes in the nazaré and setúbal submarine canyons, west iberian margin.
    Marine Geology, 250(1):64–88. 31
    Atwater, B. F. (1987). Evidence for great holocene earthquakes along the outer coast of washington
    state. Science, 236(4804):942–944. 165
    Babonneau, N., Savoye, B., Cremer, M., and Klein, B. (2002). Morphology and architecture
    of the present canyon and channel system of the zaire deep-sea fan. Marine and Petroleum
    Geology, 19(4):445–467. 31
    Barnes, P. M., Bostock, H. C., Neil, H. L., Strachan, L. J., and Gosling, M. (2013). A
    2300-year paleoearthquake record of the southern alpine fault and fiordland subduction zone,
    new zealand, based on stacked turbidites. Bulletin of the Seismological Society of America,
    103(4):2424–2446. 37, 125
    Beck, C. (2009). Late quaternary lacustrine paleo-seismic archives in north-western alps: Examples
    of earthquake-origin assessment of sedimentary disturbances. Earth-Science Reviews,
    96(4):327–344. 36, 70, 94, 125, 197
    Beck, C., Mercier de Lépinay, B., Schneider, J.-L., Cremer, M., Çagatay, N., Wendenbaum, E.,
    Boutareaud, S., Ménot, G., Schmidt, S., Weber, O., et al. (2007). Late quaternary co-seismic
    sedimentation in the sea of marmara’s deep basins. Sedimentary Geology, 199(1):65–89. 4
    Bentahila, Y., Ben Othman, D., and Luck, J.-M. (2008). Strontium, lead and zinc isotopes
    in marine cores as tracers of sedimentary provenance: A case study around taiwan orogen.
    Chemical Geology, 248(1):62–82. XXV, 75, 76
    Bentsen, M., Evensen, G., Drange, H., and Jenkins, A. (1999). Coordinate transformation on a
    sphere using conformal mapping*. Monthly Weather Review, 127(12):2733–2740. 178
    Biq, C. (1972). Dual-trench structure in the taiwan-luzon region. Proc. Geol. Soc. China,
    15:65–75. 5, 55, 107, 127
    Blumberg, S., Lamy, F., Arz, H., Echtler, H., Wiedicke, M., Haug, G., and Oncken, O. (2008).
    Turbiditic trench deposits at the south-chilean active margin: a pleistocene–holocene record
    of climate and tectonics. Earth and Planetary Science Letters, 268(3):526–539. 4, 136, 197
    Bonnel, C. (2005). Mise en place des lobes distaux dans les systèmes turbiditiques actuels: analyse
    comparée des sysytèmes du Zaïre, Var, et Rhône. PhD thesis, Bordeaux 1. 32
    Bouma, A. H. (1962). Sedimentology of some flysch deposits: a graphic approach to facies
    interpretation, volume 168. Elsevier Amsterdam. 25, 26, 55, 64, 66, 109
    Bouma, A. H. (2000). Coarse-grained and fine-grained turbidite systems as end member models:
    applicability and dangers. Marine and Petroleum Geology, 17(2):137–143. 33, 34
    Bourdon, B. (2003). Introduction to U-series Geochemistry. Reviews in Mineralogy and Geochemistry,
    52(1):1–21. XVII, 97
    Carrillo, E., Beck, C., Cousin, M., Jouanne, F., Cano, V., Castilla, R., Melo, L., Villemin, T.,
    et al. (2006). A late pleistocene-holocene natural seismograph along the boconó fault (merida
    andes, venezuela): the moraine-dammed los zerpa paleo-lake. Bulletin de la Société Géologique
    de France, 177(1):3–17. 4
    Chai, B. H. (1972). Structure and tectonic evolution of taiwan. American Journal of Science,
    272(5):389–422. 127
    Chang, M.-H., Tang, T. Y., Ho, C.-R., and Chao, S.-Y. (2013). Kuroshio-induced wake in the
    lee of Green Island off Taiwan. Journal of Geophysical Research: Oceans, 118(3):1508–1519.
    XIX, 113, 119
    Chapron, E., Beck, C., Pourchet, M., and Deconinck, J.-F. (1999). 1822 earthquake-triggered
    homogenite in lake le bourget (nw alps). Terra Nova, 11(2-3):86–92. 4
    Chen, C.-T. A., Liu, J. T., and Tsuang, B.-J. (2004). Island-based catchment—the taiwan
    example. Regional Environmental Change, 4(1):39–48. 10, 56
    Chen, K.-P. and Tsai, Y.-B. (2008). A catalog of taiwan earthquakes (1900–2006) with homogenized
    mw magnitudes. Bulletin of the Seismological Society of America, 98(1):483–489. XXV,
    14, 142
    Chen, L.-K., Wu, T.-Y., and Chen, S.-C. (2012). Morakot typhoon : capacity of rainfall to landslide
    in taiwan. Conference Proceedings, 12th Congress INTERPRAEVENT 2012, Grenoble,
    France, pages 67–76. 169
    Chen, Y.-G. and Liu, T.-K. (2000). Holocene uplift and subsidence along an active tectonic
    margin southwestern taiwan. Quaternary Science Reviews, 19(9):923–930. 9
    Cheng, S. N. and Yeh, Y. T. (1989). Catalog of the Earthquakes in Taiwan from 1604 to 1988.
    Institute of Earth Sciences, Academia Sinica. XXV, 14, 142
    Cheng, S.-N., Yeh, Y.-T., and Yu, M.-S. (1996). The 1951 taitung earthquake in taiwan.
    JOURNAL-GEOLOGICAL SOCIETY OF CHINA-TAIWAN-, 39:267–286. XXV, 14, 142
    Chiu, J.-K. and Liu, C.-S. (2008). Comparison of sedimentary processes on adjacent passive
    and active continental margins offshore of sw taiwan based on echo character studies. Basin
    Research, 20(4):503–518. 67
    Choi, B., Kaistrenko, V., Kim, K., Min, B., and Pelinovsky, E. (2011). Rapid forecasting of
    tsunami runup heights from 2-d numerical simulations. Natural Hazards and Earth System
    Science, 11(3):707–714. 177, 179
    Chung, J.-K. (2013). Peak ground motion predictions with empirical site factors using taiwan
    strong motion network recordings. Earth Planets Space, 65(9):957–972. 138
    Clague, J. J. (1995). Early historical and ethnographical accounts of large earthquakes and
    tsunamis on western vancouver island. British Columbia, Current Research, pages 47–50. 165
    Collot, J.-Y., Lewis, K., Lamarche, G., and Lallemand, S. (2001). The giant Ruatoria debris
    avalanche on the northern Hikurangi margin, New Zealand: Result of oblique seamount subduction.
    Journal of Geophysical Research, 106(B9):19271–19297. 55
    Dadson, S., Hovius, N., Pegg, S., Dade, W. B., Horng, M. J., and Chen, H. (2005). Hyperpycnal
    river flows from an active mountain belt. Journal of Geophysical Research, 110(F4):F04016.
    10, 57, 72
    Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng,
    M.-J., Chen, M.-C., Stark, C. P., Lague, D., and Lin, J.-C. (2003). Links between erosion,
    runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967):648–51. 9
    Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J.-C., Hsu, M.-L., Lin, C.-W., Horng,
    M.-J., Chen, T.-C., Milliman, J., and Stark, C. P. (2004). Earthquake-triggered increase in
    sediment delivery from an active mountain belt. Geology, 32(8):733. 10, 56
    Dan, G., Sultan, N., Savoye, B., Deverchere, J., and Yelles, K. (2009). Quantifying the role
    of sandy–silty sediments in generating slope failures during earthquakes: example from the
    algerian margin. International Journal of Earth Sciences, 98(4):769–789. 37, 138
    Derrieux, F., Siame, L. L., Bourlès, D. L., Chen, R.-F., Braucher, R., Léanni, L., Lee, J.-C.,
    Chu, H.-T., and Byrne, T. B. (2014). How fast is the denudation of the taiwan mountain belt?
    perspectives from in situ cosmogenic< sup> 10</sup> be. Journal of Asian Earth Sciences,
    88:230–245. 9
    Dezileau, L., Lehu, R., Lallemand, S., Hsu, S.-K., Babonneau, N., Ratzov, G., Lin, A. T., and S.,
    D. (2014). Historical reconstruction of submarine earthquakes using 210pb, 137cs and 241am
    turbidite chronology and radiocarbon reservoir age estimation off east taiwan. Radicarbon.
    XXV, 130, 144, 172
    Einsele, G. (1996). Event deposits: the role of sediment supply and relative sea-level changes-an
    introduction. Sedimentary Geology, 104(1):11–37. 55
    Engdahl, E. R. and Villaseñor, A. (2002). 41 global seismicity: 1900–1999. International Geophysics,
    81:665–XVI. XXV, 14, 142
    Eschard, R., Albouy, E., Deschamps, R., Euzen, T., and Ayub, A. (2003). Downstream evolution
    of turbiditic channel complexes in the pab range outcrops (maastrichtian, pakistan). Marine
    and Petroleum Geology, 20(6):691–710. XIV, 34
    Flood, R. D., Manley, P. L., Kowsmann, R. O., Appi, C. J., and Pirmez, C. (1991). Seismic
    facies and late quaternary growth of amazon submarine fan. In Seismic facies and sedimentary
    processes of submarine fans and turbidite systems, pages 415–433. Springer. 31
    Font, Y. and Lallemand, S. (2009). Subducting oceanic high causes compressional faulting in
    southernmost Ryukyu forearc as revealed by hypocentral determinations of earthquakes and
    reflection/refraction seismic data. Tectonophysics, 466(3-4):255–267. XXV, 62, 75, 76
    Font, Y., Liu, C.-S., Schnurle, P., and Lallemand, S. (2001). Constraints on backstop geometry
    of the southwest Ryukyu subduction based on reflection seismic data. Tectonophysics, 333(1-
    2):135–158. XXV, 75, 76
    Fontugne, M., Carre, M., Bentaleb, I., Julien, M., and Lavallee, D. (2004). Radiocarbon reservoir
    age variations in the south peruvian upwelling during the holocene. Radiocarbon, 46(2):531–
    537. 101, 108
    Forel, F.-A. (1887). Le ravin sous-lacustre du Rhône dans le lac Léman. Impr. L. Corbaz. 25
    Galewsky, J., Stark, C. P., Dadson, S., Wu, C.-C., Sobel, a. H., and Horng, M.-J. (2006).
    Tropical cyclone triggering of sediment discharge in Taiwan. Journal of Geophysical Research,
    111(F3):F03014. 9, 56

    Galloway, W. E. (1998). Siliciclastic slope and base-of-slope depositional systems: component
    facies, stratigraphic architecture, and classification. AAPG bulletin, 82(4):569–595. 31
    Garcia-Orellana, J., Gràcia, E., Vizcaino, A., Masqué, P., Olid, C., Martínez-Ruiz, F., Piñero,
    E., Sanchez-Cabeza, J.-A., and Dañobeitia, J. (2006). Identifying instrumental and historical
    earthquake records in the sw iberian margin using 210pb turbidite chronology. Geophysical
    Research Letters, 33(24). 107, 110
    Gaudin, M. (2006). Processus et enregistrements sédimentaires dans les canyons sous-marins
    Bourcart et de Capbreton durant le dernier cycle climatique. PhD thesis, Bordeaux 1. 31
    Ge, X., Li, T., Zhang, S., and Peng, M. (2010). What causes the extremely heavy rainfall in
    taiwan during typhoon morakot (2009)? Atmospheric science letters, 11(1):46–50. 10, 56
    Gennesseaux, M., Mauffret, A., and Pautot, G. (1980). Les glissements sous-marins de la pente
    continentale niçoise et la rupture de câbles en mer ligure (méditerranée occidentale). Comptes
    Rendus de l’Académie des Sciences de Paris, 290(14):959–962. 21
    Goldberg, E. D. (1963). Geochronology with 210pb. Radioactive dating, pages 121–131. 96, 110
    Goldfinger, C. (2011). Submarine paleoseismology based on turbidite records. Annual review of
    marine science, 3:35–66. 4, 125
    Goldfinger, C., Morey, A. E., Nelson, C. H., Gutiérrez-Pastor, J., Johnson, J. E., Karabanov,
    E., Chaytor, J., and Eriksson, A. (2007). Rupture lengths and temporal history of significant
    earthquakes on the offshore and north coast segments of the Northern San Andreas Fault
    based on turbidite stratigraphy. Earth and Planetary Science Letters, 254(1-2):9–27. XVII,
    93, 95, 125, 136
    Goldfinger, C., Nelson, C. H., and Johnson, J. E. (2003). Holocene earthquake records from the
    cascadia subduction zone and northern san andreas fault based on precise dating of offshore
    turbidites. Annual Review of Earth and Planetary Sciences, 31(1):555–577. 4, 36, 70, 93, 94,
    125, 136, 197
    Goldfinger, C., Nelson, C. H., Morey, A. E., Johnson, J. E., Patton, J., Karabanov, E., Gutierrez-
    Pastor, J., Eriksson, A. T., Gracia, E., Dunhill, G., et al. (2012). Turbidite event history:
    Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. US
    Department of the Interior, US Geological Survey. 125, 196

    Goldfinger, C., Patton, J. R., Van Daele, M., Moernaut, J., Nelson, C. H., de Batist, M., and
    Morey, a. E. (2014). Can turbidites be used to reconstruct a paleoearthquake record for the
    central Sumatran margin?: COMMENT. Geology, 42(9):e344–e344. 196
    Goodfriend, G. A. and Flessa, K. W. (1997). Radiocarbon reservoir ages in the gulf of california:
    roles of upwelling and flow from the colorado river. Radiocarbon, 39(2):139–148. 101, 108
    Gorsline, D., De Diego, T., and Nava-Sanchez, E. (2000). Seismically triggered turbidites in
    small margin basins: Alfonso Basin, Western Gulf of California and Santa Monica Basin,
    California Borderland. Sedimentary Geology, 135(1-4):21–35. XVII, 93, 94, 125, 197
    Goto, K., Kawana, T., and Imamura, F. (2010). Historical and geological evidence of boulders
    deposited by tsunamis, southern ryukyu islands, japan. Earth-Science Reviews, 102(1):77–99.
    167
    Goto, K., Miyagi, K., and Imamura, F. (2013). Localized tsunamigenic earthquakes inferred
    from preferential distribution of coastal boulders on the ryukyu islands, japan. Geology,
    41(11):1139–1142. 167
    Gràcia, E., Vizcaino, A., Escutia, C., Asioli, A., Rodés, A., Pallàs, R., Garcia-Orellana, J.,
    Lebreiro, S., and Goldfinger, C. (2010). Holocene earthquake record offshore Portugal (SW
    Iberia): testing turbidite paleoseismology in a slow-convergence margin. Quaternary Science
    Reviews, 29(9-10):1156–1172. 4, 37, 71, 93, 94, 125, 136, 137, 197
    Hampton, M. A. (1972). The role of subaqueous debris flow in generating turbidity currents.
    Journal of Sedimentary Research, 42(4). 28
    Hampton, M. a., Lee, H. J., and Locat, J. (1996). Submarine landslides. Reviews of Geophysics,
    34(1):33. 21, 60, 67, 68
    Heezen, B. C. and Ewing, W. M. (1952). Turbidity currents and submarine slumps, and the
    1929 grand banks [newfoundland] earthquake. American Journal of Science, 250(12):849–873.
    136
    Hetland, E. A. and Wu, F. T. (2001). Crustal structure at the intersection of the ryukyu
    trench with the arc-continent collision in taiwan: Results from an offshore-onshore seismic
    experiment. Terrestrial Atmospheric And Oceanic Sciences, 12(SUPP):231–248. XXV, 62,
    75, 76
    Hsieh, M.-L., Liew, P.-M., and Hsu, M.-Y. (2004). Holocene tectonic uplift on the hua-tung
    coast, eastern taiwan. Quaternary International, 115:47–70. 9
    Hsin, Y.-C., Wu, C.-R., and Shaw, P.-T. (2008). Spatial and temporal variations of the kuroshio
    east of taiwan, 1982–2005: A numerical study. Journal of Geophysical Research: Oceans
    (1978–2012), 113(4). XIX, XXI, 119, 169, 176, 184
    Hsu, M.-T. (1961). Seismicity of taiwan (formosa). Bull. earthq. Res. Inst. Tokyo University,
    39:831–847. 7, 56
    Hsu, S.-K., Kuo, J., Lo, C.-L., Tsai, C.-H., Doo, W.-B., Ku, C.-Y., and Sibuet, J.-C. (2008).
    Turbidity currents, submarine landslides and the 2006. Terr. Atmos. Ocean. Sci., 19(6):762–
    772. 21, 67
    Hsu, S.-K., Yeh, Y.-C., Sibuet, J.-C., Doo, W.-B., and Tsai, C.-H. (2013). A mega-splay fault
    system and tsunami hazard in the southern ryukyu subduction zone. Earth and Planetary
    Science Letters, 362:99–107. 167
    Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., and Chen, H.-Y. (2009). Interseismic crustal
    deformation in the taiwan plate boundary zone revealed by gps observations, seismicity, and
    earthquake focal mechanisms. Tectonophysics, 479(1):4–18. XIII, 7
    Huang, C., Shyu, C., Lin, S., Lee, T., and Sheu, D. (1992). Marine geology in the arc-continent
    collision zone off southeastern taiwan: Implications for late neogene evolution of the coastal
    range. Marine Geology, 107:183–212. XXV, 58, 64, 65, 66, 75, 76
    Huang, C.-Y., Yuan, P. B., and Tsao, S.-J. (2006). Temporal and spatial records of active
    arc-continent collision in taiwan: A synthesis. Geological Society of America Bulletin, 118(3-
    4):274–288. XIII, 8
    Hughen, K. A., Baillie, M. G., Bard, E., Beck, J. W., Bertrand, C. J., Blackwell, P. G., Buck,
    C. E., Burr, G. S., Cutler, K. B., Damon, P. E., et al. (2004). Marine04 marine radiocarbon
    age calibration, 0-26 cal kyr bp. Radiocarbon, 46:1059–1086. 108, 112
    Huh, C.-A., Su, C.-C., Liang, W.-T., and Ling, C.-Y. (2004). Linkages between turbidites in the
    southern Okinawa Trough and submarine earthquakes. Geophysical Research Letters, 31:2–5.
    XIV, XIX, XXV, 4, 5, 36, 37, 39, 40, 55, 58, 75, 76, 107, 110, 111, 125, 134, 135, 138, 149, 195
    Huh, C.-A., Su, C.-C.,Wang, C.-H., Lee, S.-Y., and Lin, I.-T. (2006). Sedimentation in the southern
    okinawa trough—rates, turbidites and a sediment budget. Marine geology, 231(1):129–139.
    55, 107, 110
    Ingram, B. and Southon, J. (1997). Reservoir ages in eastern pacific coastal and estuarine waters.
    radiocarbon. Radiocarbon, 38(3):573–582. 108
    Izumi, N. (2004). The formation of submarine gullies by turbidity currents. Journal of Geophysical
    Research: Oceans (1978–2012), 109(C3). 31
    Kao, H., Shen, S.-s. J., and Ma, K.-F. (1998). Transition from oblique subduction to collision:
    Earthquakes in the southernmost ryukyu arc-taiwan region. Journal of Geophysical Research:
    Solid Earth (1978–2012), 103(B4):7211–7229. 127
    Kao, S. and Milliman, J. (2008). Water and sediment discharge from small mountainous rivers,
    taiwan: The roles of lithology, episodic events, and human activities. The Journal of Geology,
    116(5):431–448. 10, 57
    KAWANA, T. and NAKATA, T. (1994). Timing of late holocene tsunamis originated around the
    southern ryukyu islands, japan, deduced from coralline tsunami deposits. Journal of geography
    (Chigaku Zasshi), in Japanese, 103(4):352–376. 176
    Kennett, D. J., Ingram, B. L., Erlandson, J. M., and Walker, P. (1997). Evidence for temporal
    fluctuations in marine radiocarbon reservoir ages in the santa barbara channel, southern
    california. Journal of Archaeological Science, 24(11):1051–1059. 101
    Krishnaswamy, S., Lal, D., Martin, J., and Meybeck, M. (1971a). Geochronology of lake sediments.
    Earth and Planetary Science Letters, 11(1):407–414. 96
    Krishnaswamy, S., Lal, D., Martin, J., and Meybeck, M. (1971b). Geochronology of lake sediments.
    Earth and Planetary Science Letters, 11(1):407–414. 110
    Kuenen, P. H. and Migliorini, C. (1950). Turbidity currents as a cause of graded bedding. The
    Journal of Geology, pages 91–127. 25
    Lai, J.-S., Chiu, C.-Y., Chang, H.-K., Hu, J.-C., and Tan, Y.-C. (2010). Potential inundation
    hazards in the taipei basin induced by reactivation of the shanchiao fault in northern taiwan.
    Terrestrial, Atmospheric and Oceanic Sciences, 21(3):529–542. 165
    Lallemand, S., Heuret, A., and Boutelier, D. (2005). On the relationships between slab dip, backarc
    stress, upper plate absolute motion, and crustal nature in subduction zones. Geochemistry,
    Geophysics, Geosystems, 6(9). 166, 167
    Lallemand, S., Liu, C.-S., Dominguez, S., Schnürle, P., and Malavieille, J. (1999). the act scientific
    crew, 1999. trench-parallel stretching and folding of forearc basins and lateral migration
    of the accretionary wedge in the southern ryukyus: a case of strain partition caused by oblique
    convergence. Tectonics, 18(2):231–247. XXV, 75, 76
    Lallemand, S., Theunissen, T., Schnürle, P., Lee, C.-S., Liu, C.-S., and Font, Y. (2013). Tectonophysics
    Indentation of the Philippine Sea plate by the Eurasia plate in Taiwan : Details from
    recent marine seismological experiments. Tectonophysics, 594:60–79. XXV, 39, 62, 69, 75, 76,
    125
    Lallemand, S. E., Liu, C.-S., and Font, Y. (1997b). A tear fault boundary between the taiwan
    orogen and the ryukyu subduction zone. Tectonophysics, 274(1):171–190. XXV, 75, 76
    Lallemand, S. E. and Tsien, H.-H. (1997). An introduction to active collision in Taiwan. Tectonophysics,
    274:1–4. XXI, 58, 174, 178, 185
    Lau, A. Y. A., Switzer, A. D., Dominey-Howes, D., Aitchison, J., and Zong, Y. (2010). Written
    records of historical tsunamis in the northeastern south china sea: challenges associated with
    developing a new integrated database. Nat. Hazards Earth Syst. Sci., (10):1793–1806. 168
    Lay, T. and Kanamori, H. (2011). Insights from the great 2011 japan earthquake. Phys. Today,
    64(12):33. 165
    Lee, H., Locat, J., Dartnell, P., Israel, K., and Wong, F. (1999). Regional variability of slope
    stability: application to the eel margin, california. Marine Geology, 154(1):305–321. 37
    Lee, H. J. and Edwards, B. D. (1986). Regional method to assess offshore slope stability. Journal
    of Geotechnical Engineering, 112(5):489–509. 37
    Lee, S. and Pradhan, B. (2007). Landslide hazard mapping at selangor, malaysia using frequency
    ratio and logistic regression models. Landslides, 4(1):33–41. 67
    Lehu, R., Lallemand, S., Hsu, S.-K., Lin, A. T., Ratzov, G., Babonneau, N., and Dezileau,
    L. (2013). Submarine paleoseismology offshore eastern taiwan: New insights from turbidite
    records. Abstract in AGU Fall meeting. 169
    Lehu, R., Lallemand, S., Hsu, S.-K., Lin, A. T., Ratzov, G., Babonneau, N., and Dezileau, L.
    (2014). Deep-sea sedimentation offshore eastern taiwan: facies and processes characterization.
    Marine Geology. 107, 108, 109, 110, 111, 125, 127, 128, 131, 132, 133, 137, 174
    Li, Y.-H. (1976). Denudation of taiwan island since the pliocene epoch. Geology, 4(2):105–107.
    10, 56
    Liew, P., Pirazzoli, P., Hsieh, M., Arnold, M., Barusseau, J., Fontugne, M., and Giresse, P.
    (1993). Holocene tectonic uplift deduced from elevated shorelines, eastern coastal range of
    taiwan. Tectonophysics, 222(1):55–68. 9
    Lin, J.-Y., Sibuet, J.-C., Hsu, S.-K., and Wu, W.-N. (2014). Could a sumatra-like megathrust
    earthquake occur in the south ryukyu subduction zone? Earth, Planets and Space, 66(1):1–8.
    176
    Lin, Y.-L., Ensley, D. B., Chiao, S., and Huang, C.-Y. (2002). Orographic influences on rainfall
    and track deflection associated with the passage of a tropical cyclone. Monthly weather review,
    130(12). 9, 56
    Litchfield, N. J. and Berryman, K. R. (2005). Correlation of fluvial terraces within the hikurangi
    margin, new zealand: implications for climate and baselevel controls. Geomorphology,
    68(3):291–313. 35
    Liu, J., Liu, C., Xu, K., Milliman, J., Chiu, J., Kao, S., and Lin, S. (2008). Flux and fate of small
    mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1-4):65–76.
    XVI, 9, 10, 37, 56, 57, 73, 77, 125, 167, 169
    Locat, J. and Lee, H. J. (2002). Submarine landslides: advances and challenges. Canadian
    Geotechnical Journal, 39(1):193–212. 55, 67
    Lofi, J., Inwood, J., Proust, J.-N., Monteverde, D. H., Loggia, D., Basile, C., Otsuka, H.,
    Hayashi, T., Stadler, S., Mottl, M. J., et al. (2013). Fresh-water and salt-water distribution
    in passive margin sediments: Insights from integrated ocean drilling program expedition 313
    on the new jersey margin. Geosphere, 9(4):1009–1024. 173
    Lowe, D. R. (1982). Sediment gravity flows: Ii depositional models with special reference to the
    deposits of high-density turbidity currents. Journal of Sedimentary Research, 52(1). XIV, 26
    Ma, K.-F. and Lee, M.-F. (1997). Simulation of historical tsunamis in the taiwan region. Diqiu
    Kexue Jikan= TAO, Terrestrial, Atmospheric and Oceanic Sciences, 8(1):13–30. 168
    Madec, G. (2008). Nemo ocean engine. 179
    Malavieille, J., Lallemand, S., Dominguez, S., Deschamps, A., Lu, C., Liu, C., Schnürle, P.,
    Hsu, J., Liu, S., Sibuet, J., and Others (2002). Arc-continent collision in taiwan new marine
    observations and tectonic evolution. Geological Society of America Special Paper, pages 189–
    213. XXV, 7, 8, 39, 48, 57, 59, 61, 62, 63, 68, 71, 75, 76, 125, 127, 166
    Marsaleix, P., Auclair, F., Duhaut, T., Estournel, C., Nguyen, C., and Ulses, C. (2012). Alternatives
    to the robert–asselin filter. Ocean Modelling, 41:53–66. 178
    Marsaleix, P., Auclair, F., and Estournel, C. (2006). Considerations on open boundary conditions
    for regional and coastal ocean models. Journal of Atmospheric and Oceanic Technology,
    23(11):1604–1613. 179
    Marsaleix, P., Auclair, F., and Estournel, C. (2009). Low-order pressure gradient schemes in
    sigma coordinate models: The seamount test revisited. Ocean Modelling, 30(2):169–177. 178
    Marsaleix, P., Auclair, F., Estournel, C., Nguyen, C., and Ulses, C. (2011). An accurate implementation
    of the compressibility terms in the equation of state in a low order pressure gradient
    scheme for sigma coordinate ocean models. Ocean Modelling, 40(1):1–13. 178
    Marsaleix, P., Auclair, F., Floor, J. W., Herrmann, M. J., Estournel, C., Pairaud, I., and Ulses,
    C. (2008). Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean
    Modelling, 20(1):61–89. 177, 178
    Masqué, P., Fabres, J., Canals, M., Sanchez-Cabeza, J., Sanchez-Vidal, A., Cacho, I., Calafat,
    A., and Bruach, J. (2003). Accumulation rates of major constituents of hemipelagic sediments
    in the deep alboran sea: a centennial perspective of sedimentary dynamics. Marine Geology,
    193(3):207–233. 107
    Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., and Lø vholt, F. (2006). Submarine
    landslides: processes, triggers and hazard prediction. Philosophical transactions. Series A,
    Mathematical, physical, and engineering sciences, 364(1845):2009–2039. 55, 67
    Wu, F. T., Liang, W.-T., Lee, J.-C., Benz, H., and Villasenor, A. (2009). A model for the
    termination of the ryukyu subduction zone against taiwan: A junction of collision, subduction/
    separation, and subduction boundaries. Journal of Geophysical Research: Solid Earth
    (1978–2012), 114(B7). 62
    Wu, W.-N., Kao, H., Hsu, S.-K., Lo, C.-L., and Chen, H.-W. (2010). Spatial variation of the
    crustal stress field along the ryukyu-taiwan-luzon convergent boundary. Journal of Geophysical
    Research: Solid Earth (1978–2012), 115(B11). 125
    Wu, Y.-M., Chang, C.-H., Zhao, L., Teng, T.-L., and Nakamura, M. (2008). A comprehensive
    relocation of earthquakes in taiwan from 1991 to 2005. Bulletin of the Seismological Society
    of America, 98(3):1471–1481. XXV, 14, 142
    Yoneda, M., Uno, H., Shibata, Y., Suzuki, R., Kumamoto, Y., Yoshida, K., Sasaki, T., Suzuki,
    A., and Kawahata, H. (2007). Radiocarbon marine reservoir ages in the western pacific estimated
    by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics Research
    Section B: Beam Interactions with Materials and Atoms, 259(1):432–437. XVIII, XXV, 101,
    102, 111, 112, 113, 130, 144, 172
    Yu, K., Hua, Q., Zhao, J.-x., Hodge, E., Fink, D., and Barbetti, M. (2010). Holocene marine
    14c reservoir age variability: Evidence from 230th-dated corals in the south china sea.
    Paleoceanography, 25(3). 111, 112, 130
    Yu, S.-B., Chen, H.-Y., and Kuo, L.-C. (1997). Velocity field of gps stations in the taiwan area.
    Tectonophysics, 274(1):41–59. 127
    Zhou, Q. and Adams, W. (1985). Tsunamigenic earthquakes in china 1831 b.c. - 1980 a.d.
    Extended abstract in International Tsunami Symposium, Victoria, BC, Canada, pages 543–
    550. 168

    QR CODE
    :::