| 研究生: |
劉俊志 Chun-Chih Liu |
|---|---|
| 論文名稱: |
膨潤土與花崗岩碎石混合材料之熱傳導係數 Measurement of thermal conductivity of bentonite and crushed granite mixture |
| 指導教授: |
田永銘
Yuan-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 熱傳導係數 、緩衝材料 、微觀力學熱探針法 |
| 外文關鍵詞: | micromechanics, buffer material, thermal conductivity |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今世界上由於放射性能源大量的使用,處置放射性廢料的處置便成為重要的研究課題。目前對於放射性廢料的處置方法中較普遍的方法是利用深層處置場來封存放射性廢料,並於廢料與母岩中加一緩衝材料,緩衝材料的選取依各國家資源不同而有些許之差異,目前各國研究其工程性質發現,膨潤土與砂-膨潤土顆粒混合材料,具有良好的阻絕性及優良的熱學性質。
本文主要針對純膨潤土與依照不同體積比混和之膨潤土加花崗岩碎石,製作不同乾密度,含水量之土樣。設計一模具壓製試體,利用暫態熱針法量測熱傳導係數,由試驗結果可以得知,熱傳導係數會隨著土體之乾密度與含水量之增加而增加;與花崗岩碎石混合後,由於花崗岩可視為一加強材料,故熱傳導係數亦會隨著顆粒之體積比之增加而增加。利用微觀力學成分體積比觀念,發展等含水量法與等密度法計算體積比,應用於微分模式與Self-consistent scheme預測熱傳導係數,與De Vries and Campbell所發展之經驗式(1985),兩者與實驗值比較,可得一良好之預測結果。
For the use of radioactive energy, it is important to develop techniques for the disposal of radioactive wastes in the world. Recently, many countries plan to construct the disposal facility underground deeply. Radioactive waste are sealed in canisters, and buffer materials are filled between canisters and host rock. Buffer materials must have good engineering properties. One of the most important factor is the thermal property. Among the candidates of buffer materials in many other researches, we know that mixture of bentonite and crushed granite has good mechanical properties and thermal characteristics.
The study aims at measuring thermal conductivity of buffer materials with different densities, water contents and granite contents. We improve the heat probe method (ASTM D5334) by designing proper instruments and techniques to measure the thermal conductivity of bentonite and sand-bentonite mixture. In the results we find that the thermal conductivities of buffer material blocks rise with the increasing of density or water content. With mixing of crushed granite, which has higher thermal conductivities, the thermal conductivity increases with granite volumetric fraction. Appling the concept of micromechanics, we develop the equal-density and the equal-water-content method to calculate the volumetric fraction of two individual batches to form one. In this way, Differential scheme and Self-consistent scheme can be applied to predict the thermal conductivities. In comparing with experiential method: the De Vries and Campbell model, both methods can match with experimental data well.
1.田永銘,「大地材料之吸水回脹行為」,博士論文,國立成功大學土木工程研究所,台南(1992)。
2.田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(I)」,行政院原子能委員會委託研究計畫研究報告,912001INER006,台北(2001)。
3.田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(II)」,行政院原子能委員會委託研究計畫研究報告,912001INER020,台北(2002)。
4.吳博凱,「岩樣熱傳導試驗及深岩層地溫推估模式」,碩士論文,國立交通大學土木工程研究所,新竹(1996)。
5.譚建國、顏崇斌,「以微分模式探求纖維加強複合材料之熱彈係數」,中國工程學刊,第五卷,第三期,第121-131頁(1982)。
6.簡城宗,「複合土體熱傳導性質之初步研究」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
7.Abu-Hamdeh. N. H., “Effect of tillage treatments on soil thermal
conductivity for some Jordanian clay loam and loam soils,” Soil & Tillage Research, Elsevier, pp. 145-151 (2000).
8.Agilent Technologies, Inc., ”Agilent 344970A data acquisition/switch unit,”
3rd Ed., U.S.A. (1999).
9.ASTM, “ASTM D5334 : Standard Test Method for Determination of Thermal
Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure,”
Annual Book of ASTM Standards, Vol.0409, (2000).
10. Borgesson, L., Fredrikson, A., and Johannesson, L., “Heat conductivity of
buffer materials,”SKB Technical Report, Lund, Sweden (1994).
11. Bristow, K. L., “Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes,” Agricultural and forest meteorology, Elsevier, pp. 75-84 (1998).
12. Buntebarth, G., and Schopper, J.R., “Experimental and theoretical investigations on the influence of fluids, solids and interactions between them on thermal properties of porous rocks,” Journal of Phys. Chem. Earth., Elsevier, Vol. 23, No. 9-10, pp.1141-1146 (1998).
13. Campbell, G. S., Soil Physics with BASIC Transport Models for Soil-Plant Systems, Elsevier, New York (1985).
14. Chapman, N.A., McKinley, I.G., and Hill, M.D., The Geological Disposal of Nuclear Waste, John Wiley & Sons, Great Britain, pp. 49-95 (1987).
15. Farouki, O.T., Thermal Properties of Soils, Series on Rock and Soil Mechanics, Vol.11, Trans Tech Publications, Germany (1986).
16. Incropera, F.P.,DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 4th Ed., John Wiley & Sons, Inc., New York, pp. 44-55 (1996).
17. JNC, “H12 Project to Establish Technical Basis for HLW Disposal in Japan Supporting Report 2 : Repository Design and Engineering Technology,”JNC Report, Japan, pp.63-70 (1999).
18. Khan, M.I., “Factors affecting the thermal properties of concrete and applicability of its prediction models,” Building and Environment, Pergamon, pp.607-614(2002).
19. Mclaughlin., R., “A study of the differential scheme for composite materials,” J. Eng Sci., pp.237-244(1977).
20. Ould-Lahoucine, C., Sakashita, H., and Kumada, T., “Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it,” Nuclear Engineering and Design, Elsevier, pp.1-11(2002).
21. Pusch, R., Waste Disposal in Rock, Elsevier, Sweden, pp.430-440 (1994).
Singh, D.N., and Devid, K., “Generalized relationships for estimating soil thermal resistivity,”Experimental Thermal and Fluid Science, Elsevier, pp. 133-143 (2000).
22. Robert, F. Speyer , Thermal Analysis of Materials , Marcel Dekker , New York ,pp.227-249(1993).
23. Singh, D. N.,Kuriyan, S.J., and Manthena, K. C., “A generalized relationship between soil electrical and thermal resistivities,” Experimental Thermal and Fluid Science, Elsevier, pp.175-181(2000).
24. Tien, Y. M., Wu, P. L., Chuang, W. S., Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Reims, France (2002).
25. Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., Thermal Conductivity of Nonmetallic Solids, Plenum Publish Corporation, Washington(1970).