跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈韋廷
Wei-ting Shen
論文名稱: 鈍角三角形的邊線向量與內部向量探討及其在二維元件模擬之應用
Finding internal vector from the edge vector in obtuse triangle element for 2D Semiconductor Device Simulation
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 52
中文關鍵詞: 半導體模擬二維
外文關鍵詞: semiconductor simulation, two-dimensional
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,我們利用C語言模擬半導體元件特性。發現在切割網格時會如果出現180°切角,這會造成模擬上的誤差,而為了減少這誤差產生,我們將180°切角切割成不同角度,其中會出現鈍角三角形網格,所以我們開發了鈍角三角形模組來解決這問題。先利用單一鈍角三角形模組驗證,再經由模擬電阻與實際電阻值比較,及二極體的模擬驗證來確保模擬的正確性,最後應用在包含鈍角三角形網格的相關應用,例如:MOS電容器、180°切角的改善、局部網格加密時會出現的180°切角問題,都不會造成過大的誤差,並且成功改善了鈍角三角形網格模擬上的誤差。


    In this thesis, we use C language to simulate semiconductor device characteristics. We found that the 180°-angle mesh will cause simulation problem. It may have a triangle mesh with an obtuse angle if we divide the 180° angle into two angles. In order to simulate the obtuse triangle mesh, it’s necessary to develop an obtuse triangle model for 2D device simulation. The validity of a single obtuse triangle model is verified by numerical experiment. We simulate a resister and compare its result to the theoretical value. Finally, applying this obtuse model to many applications, such as MOS capacitor, 180°-angle problem, in mesh regrid.

    摘要...............................................i Abstract..........................................ii 圖目錄.............................................iv 表目錄.............................................vi 第一章 簡介.........................................1 第二章 二維鈍角三角形模組等效電路開發與驗證.............2 2.1 簡單網格分析概念.................................2 2.2 封閉面規劃及討論.................................3 2.2.1利用外心定義封閉面..............................3 2.2.2外心在鈍角三角形出現的問題.......................5 2.2.3利用重心定義封閉面..............................6 2.3 利用邊線電場求其內部電場..........................6 2.4 二維數值鈍角三角形驗證...........................12 2.4.1二維數值鈍角三角形內電場驗證.....................12 2.4.2二維數值鈍角三角形內電子流密度與電洞流密度驗證.....16 第三章 半導體元件特性模擬與驗證.......................21 3.1簡單電阻模擬與分析................................21 3.2簡單電阻模擬之外心與重心比較.......................23 3.3二極體接面特性模擬與討論...........................25 第四章 半導體元件應用與討論...........................30 4.1 MOS電容器特性模擬................................31 4.2 180°切角的改善...................................34 4.3 尺寸微縮時出現鈍角三角形問題.......................38 第五章 結論..........................................39 參考文獻.............................................40

    [1]D R. E. Bank and D. J. Rose, “Semiconductor device simulation,” IEEE Trans, Electron Devices vol. 30, no. 9, Sep. 1983.
    [2]M. Bern, D. Eppstein, and J. Gilbert, “Provably good mesh generation,” J. Comput. System Sci., 48 (3) (1994), pp. 384–409
    [3]D. A. Neamen, Semiconductor physics and devices, 3rd ed. McGraw-Hill Companies Inc., New York, 2003.
    [4]R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical methods for semiconductor device,” IEEE Trans, Electron Devices, vol. 30, no. 9, Sep. 1983.
    [5]G. Garreton, L. Villablanca, N. Strecker, and W. Fichtner, “A new approach for 2-D mesh generation for complex device structures,” IEEE Numerical Modeling of Processes and Devices for Integrated Circuits, 1994.
    [6]M. J. Zeng, “Development of Triangular element and its applications to arbitrary 2D Semiconductor device,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2014.
    [7]M. B. Patil, “New discretization scheme for two-dimensional semiconductor device simulation on triangular grid,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 11, pp. 1160-1165, Nov. 1998.
    [8]Z. Z. Lin, “Development of Obtuse triangle element and its applications to 2D Semiconductor device,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2015.
    [9]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons Inc., New Jersey, 2007.
    [10]C. C. Hu, Modern Semiconductor Devices for Integrated Circuits, Pearson College Inc., London, 2010
    [11]J. Cervenka, W. Wessner, and E. A. Ani, T. Grasser, “Generation of unstructured meshes for process and device simulation by means of partial differential equations,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, Oct. 2006.
    [12]D. J. Cummings, M. E. Law, S. Cea, and T. Linton, “Comparison of discretization methods for device simulation,” Proc. SISPAD, pp. 119-122, 2009.
    [13]S. Micheletti, “Stabilized finite elements for semiconductor device simulation,” Comput & Visual Sci., vol. 3, pp. 177-183, 2001.
    [14]S. Holst, A. Ju¨ngel, and P. Pietra, “Mixed finite-element discretization of the energy-transport model for semiconductors,” SIAM J. Sci. Comput. vol. 24, no. 6, pp. 2058–2075. 2003.
    [15]S. Holst, A. Ju¨ngel, and P. Pietra, “An adaptive mixed scheme for energy-transport simulations of field-effect transistors,”SIAM J. Sci. Comput. vol. 27, no. 5, pp. 1689–1716. 2004.
    [16]F. Rudolf, J. Weinbub, K. Rupp, A. Morhammer, and S. Selberherr, “Template-Based mesh generation for semiconductor devices,” Proc. SISPAD, pp. 217-220, 2014.
    [17]M. Lundstrom, and J. Guo, “Nanoscale transistor: device physics, modeling, and simulation,” Springer, New York, 2006.
    [18]C. C. Lin, and M. E. Law, “2-D mesh adaption and flux discretizations for dopant diffusion modeling,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 2, Feb. 1996.
    [19]R. Dang, K. Matsushita, and H. Hayashi, “A highly efficient adaptive mesh approach to semiconductor device simulation-application to impact ionization analysis,” IEEE Trans, Magnetics, vol. 27, no. 5, Sep. 1991.
    [20]C. Heitzinger, A. Sheikholeslami, J. M. Park, and S. Selberherr, “A method for generating structurally aligned grids for semiconductor device simulation,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 10, Oct. 2005.

    QR CODE
    :::