| 研究生: |
林鈺盛 Yu-sheng Lin |
|---|---|
| 論文名稱: |
矩形鋼管混凝土柱考慮二次彎矩效應之軸壓-彎矩互制曲線研究 |
| 指導教授: | 莊德興 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 填充型鋼管混凝土柱 、軸壓-彎矩互制曲線 、纖維元素法 、二次彎矩效應 |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用非線性之纖維元素法 (Fiber element method)建立考慮二次彎矩效應之矩形填充型鋼管混凝土柱 (Concrete-filled steel tube, CFT)的軸壓雙向彎矩互制曲線。本研究採用的纖維元素法經由假設柱身之變形函數後,能考慮二次彎矩效應,並計算能施加於柱端之最大彎矩,由分析不同軸壓力所對應之彎矩強度可建立考慮二次彎矩效應之軸壓彎矩互制曲線。多組矩形CFT柱之軸壓彎矩試驗數據用來驗證纖維元素法分析CFT柱之合理性,並藉由參數研究探討纖維元素法、AISC-LDFD與ACI之適用範圍,結果發現纖維元素法在分析CFT柱受單向彎矩時能準確的計算彎矩強度,AISC與ACI則於柱長較短的案例較能計算出合理的彎矩強度。本研究將不同寬厚比、材料強度與有效柱長的CFT柱互制曲線歸納為一般化的互制公式,做為建立互制曲線之建議公式。
This study presents nonlinear fiber element method determine the axial load-biaxial bending moment interaction curves of concrete filled steel tubular beam-columns (CFT). Second-order effect is considered by assuming the deflected shape of the CFT beam-columns. Determine the maximum moment at the column ends for different axial compression loads by fiber element analysis method, the interaction curves are constructed and second-order effect is considered. Analytical results are verified by comparing with the experimental results. For the cases that the fiber element analysis method, AISC-LRFD and ACI can accurately predict the flexural strength, the parameters of the cases are studied in this research. The predicted results of fiber element analysis method show good agreement with the uniaxial bending tests. The AISC-LRFD and ACI is suitable predict the flexural strength of short CFT beam-columns. To construct the general interaction equations, interaction curves of CFT beam-columns with different width-to-thickness ratio, material strength and column lengths are considered in the equations.
[1] 許協隆、莊德興,「雙軸彎矩矩形鋼管混凝土柱設計與應用(中鼎工程股份有限公司計畫)」,財團法人中技社,台北 (2013)。
[2] ACI-318, “Building Code Requirements for structural concrete and commentary,” Detroit (MI), American Concrete Institute (2011).
[3] AISC, “Specification for Structural Steel Buildings,” American Institute of Steel Construction. Chicago, IL. (2010).
[4] Bridge, R. Q., “Concrete filled steel tubular columns,” School of Civil Engineering, the university of Sydney, Australia, Research Report No. R283 (1976).
[5] Bridge, R. Q., and O’Shea, M. D., “Behavior of thin-walled steel box sections with or without internal restraint,” Journal of Constructional Steel Research, Vol. 47, pp. 73-91 (1998).
[6] Chen, S. F., Teng, J. G., and Chan, S.L., “Design of biaxially loaded short composite columns of arbitrary section,” Journal of Structural Engineering, Vol. 127, pp. 678-685 (1997).
[7] Choi, Y. H., Foutch, D. A., and LaFave, J. M., “New approach to AISC PM interaction curve for square concrete filled tube (CFT) beam-columns,” Engineering Structures, Vol. 28, pp. 1586-1598 (2006).
[8] Choi, Y. H., Kim, K. S., and Choi, S. M., “Simplified PM interaction curve for square steel tube filled with high-strength concrete,” Thin-walled Structures, Vol. 46, pp.506-515 (2007).
[9] Chung, J., Tsuda, K., and Matsui, C., “High-strength concrete filled square tube columns subjected to axial loading,” The Seventh East Asia-Pacific Conference on Structural Engineering & Construction, Kochi, Japan, Vol. 2, pp.955-960 (1999).
[10] EI-Tawil, S., and Sanz-Picon, C. F., Deierlein, G. G., “Evaluation of ACI 318 and AISC (LRFD) Strength Provisions for Composite Beam-Columns,” Journal of Constructional Steel Research, Vol. 34, pp. 103-123 (1995).
[11] El-Tawil, S., and Deierlein, G. G., “Strength and ductility of concrete encased composite columns,” Journal of Structural Engineering, Vol. 125, pp. 1009-1019 (1999).
[12] Evirgen, B., Tuncan, A., and Taskin, K., “Structural behavior of concrete filled steel tubular sections (CFT/CFSTs) under axial compression,” Thin-Walled Structures, Vol. 80, pp. 46-56 (2014).
[13] Ellobody, E., and Young, B., “Nonlinear analysis of concrete-filled steel SHS and RHS columns,” Thin-Walled Structures, Vol. 44, pp. 919-930 (2006).
[14] Furlong, R.W., “Strength of steel-encased concrete beam–columns,” Journal of Structural Division, pp. 113-124 (1967).
[15] Ge, H. B., and Usami, T., “Strength of concrete-filled thin-walled steel box columns: Experiments,” Journal of Structural Engineering, Vol. 118, pp. 3036-3054 (1992).
[16] Grauers, M., “Composite columns of hollow steel sections filled with high strength concrete,” Goteborg (Sweden): Chalmers University of Technology, Ph.D. thesis (1993).
[17] Guo, L., Zhang S., Kim W.J., and Ranzi, G., “Behavior of square hollow steel tubes and steel tubes filled with concrete,” Thin-Walled Structures, Vol. 45, pp. 961-973 (2007).
[18] Hajjar, J. F., and Gourley, B. C., “Representation of concrete-filled steel tube cross section strength,” Journal of Structural Engineering, Vol. 122, pp. 1327-1336 (1996).
[19] Han, L. H., “Tests on stub columns of concrete-filled RHS sections,” Journal of Constructional Steel Research, Vol. 58, pp. 353-372 (2002).
[20] Hernández-Figueirido, D., Romero, M. L., Bonet, J. L., and Montalvá, J. M., “Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities,” Journal of Constructional Steel Research, Vol. 68, pp. 107-117 (2012).
[21] Knowles, R. B., and Park, R., “Strength of concrete-filled steel tubular columns,” Journal of Structural Division, Vol. 95, pp. 2565–2587 (1969).
[22] Kwon, Y. B., and Jeong, I. K., “Resistance of rectangular concrete-filled tubular (CFT) sections to the axial load and combined axial compression and bending,” Thin-Walled Structures, Vol. 79, pp. 178-186 (2014).
[23] Lakshmi, B., and Shanmugam, N. E., “Nonlinear analysis of in-filled steel-concrete composite columns,” Journal of Constructional Steel Research, Vol. 128, pp. 922-933 (2002).
[24] Liang, Q. Q., and Uy, B., “Theoretical study on the post-local buckling of steel plates in concrete-filled box columns,” Computers and Structures, Vol. 75, pp. 479-490 (2000).
[25] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Strength of concrete-filled steel box columns with local buckling effects,” Australian Journal of Structural Engineering, Vol. 7,pp. 145-155 (2005).
[26] Liang, Q. Q., Uy, B., and Liew, J. Y. R., “Local buckling of steel plates in concrete-filled thin-walled steel tubular beam-columns,” Journal of Constructional Steel Research, Vol. 63, pp. 396-405 (2007).
[27] Liang, Q. Q., “Nonlinear analysis of short concrete filled steel tubular beam–columns under axial load and biaxial bending,” Journal of Constructional Steel Research, Vol. 64, pp. 295-304 (2008).
[28] Liang, Q. Q., Patel, V. I., and Hadi, M. N. S., “Biaxially loaded high-strength concrete-filled steel tubular slender beam-columns, Part I: Multiscale simulation,” Journal of Constructional Steel Reasearch, Vol. 75, pp.64-71 (2012).
[29] Mursi, M., and Uy, B., “Strength of concrete filled steel box columns incorporating interaction buckling,” Journal of Structural Engineering, Vol. 129, pp. 626-638 (2003).
[30] Matsui, C., Tsuda, K., and Ishibashi, Y., ‘‘Slender concrete filled steel tubular columns under combined compression and bending,’’ Proc., 4th Pacific Structural Steel Conference, Singapore, Pergamon, Vol. 3, pp. 29-36 (1995).
[31] Muñoz, P. R., and Hsu, C. T. T., “Behavior of biaxially loaded concrete-encased composite columns,” Journal of Structural Engineering, Vol. 123, pp. 1163-71 (1997).
[32] Patel, V. I., Liang, Q. Q., and Hadi, M. N. S., “High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior,” Journal of Constructional steel research, Vol. 70, pp.368-376 (2012).
[33] Schneider, S. P., “Axially loaded concrete-filled steel tubes,” Journal of Structural engineering, Vol. 124, pp. 1125-1138 (1998).
[34] Shakir-Khalil, H., and Zeghiche, J., “Experimental behavior of concrete-filled rectangular hollow-section columns,” Struct. Eng., Vol. 67(19), 346-353 (1989).
[35] Shakir-Khalil, H., and Mouli, M., “Further tests on concrete-filled rectangular hollow section columns,” Struct. Eng., Vol. 68(20), 405-413 (1990).
[36] Tomii, M., and Sakino, K., “Elastic–plastic behavior of concrete filled square steel tubular beam–columns,” Transactions of the Architectural Institute of Japan, Vol. 280, pp. 111-120 (1979).
[37] Tomii, M., Yoshimura, K., and Morishita, Y., “ Experimental studies on concrete filled steel tubular stub columns under concentric loading,” In: Proceedings of the international colloquium on stability of structures under static and dynamic loads, pp. 718-741 (1977).
[38] Varma, A. H., Ricles, J. M., Sause, R., and Lu, L., “Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns,” Journal of Constructional Steel Research, Vol. 58, pp. 725-758 (2002).
[39] Vrcelj, Z., and Uy, B., “Behavior and design of steel square hollow sections filled with high strength concrete,” Aust. J. Struct. Eng., Vol. 3, pp. 153-170 (2002).
[40] Uy, B., “Local and post-local buckling of concrete filled steel welded box columns,” Journal of Constructional Steel Research, Vol. 47, pp. 47-72 (1998).
[41] Uy, B., “Strength of concrete-filled steel box columns incorporating local buckling,” Journal of Structural Engineering, Vol. 126, pp. 341-352 (2000).
[42] Wright, H. D., “Local stability of filled and encased steel sections,” Journal of Structural Engineering, Vol. 121, pp. 1382-1388 (1995).
[43] Yu, M., Zha, X., Ye, J., and Li, Y., “A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression,” Engineering Structures, Vol. 49, pp. 1-10 (2013).
[44] Zhang, W., and Shahrooz, B. M., “Comparison between ACI and AISC for concrete-filled tubular columns,” J. Struct. Eng., 125:1213-1223 (1999).