| 研究生: |
李欣融 Hsin Jung Lee |
|---|---|
| 論文名稱: |
含水層下邊界對於斜井雙極水流試驗影響 The effect from bottom boundary on dipole flow test in a slant well. |
| 指導教授: | 陳家洵 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 斜井 、雙極水流試驗 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統地下水調查及整治大多由垂直井進行,若遇到無法進行鑽設垂直井之情況時,可以一定傾角鑽設斜井深入含水層進行相關試驗。其中,雙極水流試驗可解決許多問題(如含水層水文地質參數推估、地下水流場變化、含水層下邊界之影響…等等)。當鑽設斜井時,若含水層厚度較薄,可打成全層貫穿井;但含水層厚度較厚,會造成全層貫穿井施工困難,且花費較高,因此本研究欲探討下邊界對於部分貫穿斜井雙極水流實驗之影響。由於雙極水流試驗是利用雙封塞系統將斜井隔離出上下等長之井篩段,下井篩段以定流率抽水,所抽的水在上井篩段以相同流率注入含水層,容易形成一穩態的循環流場,本研究推導穩態斜井雙極水流試驗模式,求得受壓與非受壓情況下含水層有限厚度與半無限厚度(不考慮下邊界)解。在受壓情形時,當下井篩段至下邊界距離超過0.36倍的含水層厚度,有限厚度模式與半無限厚度模式可完全吻合,可以忽略下邊界的影響。而非受壓情形時,由於不考慮時間變化,其地下水位面邊界條件為定水頭,其結果與受壓含水層相同,其傾角、井篩段長度以及兩井篩中點距離,皆不直接影響兩模式相符程度,因此不論受壓與非受壓,若要打成部分貫穿井,雙極水流試驗設置要使下井篩段至下邊界距離超過0.36倍的含水層厚度,就可忽略下邊界的影響。
In order to investigate and remediate the aquifer below a building, a slant well at the perimeter of the building is installed and reaches the target aquifer. While drilling slant well, the dipole flow test can measure many parameters more easily such as aquifer hydro geological parameters, estimation of groundwater flow field, bottom boundary of the aquifer, etc. If the aquifer is thin, drilling fully penetrating well will be successful. However, thick aquifer will make drilling entire fully penetrating well more difficult and costly. Therefore, this project wants to discuss the effect from bottom boundary on dipole flow test in a slant partially penetrating well. The slant well is isolated by using a double-packer into two screen sections of equal length. In the upper section, a constant rate pumping is carried out and the withdrawn water is immediately discharge into the lower section, which can create a steady circulation flow field. This study derives the slant well to conduct the dipole flow test in steady state model. It obtains the solution of finite thickness and semi-infinite thickness in confined and unconfined aquifer. In confined aquifer case, when the distance from the lower section to the lower boundary more than 0.36 times the thickness of the aquifer, the models same with limited thickness and semi-infinite thickness. The influence of the lower boundary can be ignored. In unconfined aquifer case, because it do not consider the time change, the water table boundary conditions for the constant head. The result is the same as confined aquifer.
[1] Parmentier, P. P., and R. M. Klemovich, A new direction in remediation, Civ. Eng., 66, 55–57, 1996.
[2] Joshi, S. D., A review of horizontal well and drainhole technology, SPE Annual Technical Conference and Exhibition , 1987.
[3] Seines, K., S. C. Lieu, and B. T. Haug, Troll horizontal well tests demonstrate large production potential from thin oil zones, SPE Reservoir Eng., 9(2), 133– 139, 1994.
[4] Maurer, W. C., Recent advance/s in horizontal drilling, J. Can. Pet. Technol., 34, 25– 33, 1995.
[5] Penmatcha, V. R., S. Arbabi, and K. Aziz, Effect of pressure drop in horizontal wells and optimum well length, SPE Production Operations Symposium, 1997.
[6] Morgan, J. H., Horizontal drilling applications of petroleum technologies for environmental purposes, GroundWater Monit. Rev., 12(2), 98– 102, 1992.
[7] Environmental Protection Agency (EPA), Manual alternative methods for fluid delivery and recovery, EPA/625/R-94/003,Washington, D. C., 1994.
[8] Falta, R. W., Analytical solutions for gas-flow due to gas injection and extraction from horizontal wells, Ground Water, 33(2), 235–246, 1995.
[9] Sawyer, C. S., and K. K. Lieuallen– Dulam, Productivity comparison of horizontal and vertical ground water remediation well scenarios, Ground Water, 36(1), 98–103, 1998.
[10] Zhan, H., Analytical study of capture time to a horizontal well, J. Hydrol., 217, 46– 54, 1999.
[11] Zhan, H., and J. Cao, Analytical and semi-analytical solutions of horizontal well capture times under no-flow and constant-head boundaries, Adv. Water Resour., 23(8), 835–848, 2000.
[12] Hantush, M. S., and I. S. Papadopulos, Flow of ground water to collector wells, J. Hydraul. Div. Proc. Am. Soc. Civ. Eng., HY5, 221–244, 1962.
[13] Goode, P. A., and R. K. M. Thambynayagam, Pressure drawdown and buildup analysis of horizontal wells in anisotropic media, SPE Form. Eval., 2(4), 683–697, 1987.
[14] Daviau, F., G. Mouronval, G. Bourdarot, and P. Curutchet, Pressure analysis for horizontal wells, SPE Form. Eval., 3, 716– 724, 1988.
[15] Ozkan, E., R. Raghavan, and S. D. Joshi, Horizontal– well pressure analysis, SPE Form. Eval., 4, 567– 575, 1989.
[16] Kuchuk, F. J., P. A. Goode, D. J. Wilkinson, and R. K. M. Thambynayagam, Pressure transient behavior of horizontal wells with and without gas cap or aquifer, SPE Form. Eval., 6, 86– 94, 1991.
[17] Zhan, H., and V.A. Zlotnik, Groundwater flow to horizontal or slanted wells in unconfined aquifers, Water Resour. Res., 38(7), 1108, 2002.
[18] Butler, J.J., the Design, Performance, and Analysis of Slug Tests, Lewis Publishers, New York, 243PP, 1998.
[19] Zlotnik, V. A., and B. R. Zurbuchen, Dipole probe: design and field applications of a single-borehole device for measurements of vertical variations of hydraulic conductivity, Ground Water, 36(6), 884–893, 1998.
[20] Kabala, Z.J., The dipole flow test: A New single-borehole test for aquifer characterization, Water Resour. Res., 29(1), 99-107, 1993.
[21] Zlotnik, V., and G. Ledder, Theory of dipole flow in uniform anisotropic aquifers, Water Resour. Res., 32(4), 1119-1128, 1996.
[22] Kabala, Z.J., D.J. Sutton, and D.E. Schaad,2000. Mode deconvolution for the dipole-flow test with a tracer, International Conference on Tracers and Modelling in Hydrogeology, 66–70, 2000.
[23] Sutton, D.J., Z.J. Kabala, D.E., Schaad, and N.C. Ruud, The dipole-flow test with a tracer – a new single-borehole tracer test for aquifer characterization, J. Cont. Hydrol. 44, 71–101. , 2000.
[24] Zlotnik, V.A., B.R. Zurbuchen, T., Halihan, and T. Ptak, Steady state dipole flow test: summary of first ten years, Proceedings of the International Groundwater Symposium, 251–255. , 2002.
[25] Halihan. T., and V. A. Zlotnik., Asymmetric dipole-flow test in a fractured carbonate aquifer, Ground Water, 40(5), 491-499, 2002.
[26] Zlotnik V.A., D.E. Eisenhauer, D.J. Schlautman, B.R. Zurbuchen, and D.Van Peursem, Entrapped air effects on dipole flow test in sand tank experiments: Hydraulic conductivity and head distribution, J. Hydrol., 339, 193– 205, 2007.
[27] Neuman, S.P., Theory of flow in unconfined aquifers considering delayed response of water table, Water Resour. Res., 8(4), 1031– 1044, 1972.
[28] Kreyszing, E., Advanced Engineering Mathematics, John wiley and Sons, Inc., New York, 1093pp, 1998.
[29] Sneddon, I. N., The Use of Integral Transforms, McGraw-Hill, New York, 540pp, 1972.
[30] Churchill, R. V., Operational Mathematics, McGraw-hill, New York, 1972.
[31] Debnath L. and D. Bhatta, Integral Transforms and Their Applications, Chapman & Hall/CRC, 673pp, 2007.
[32] Gradshteyn and Ryzhik, Table of Integrals, Series, and Products, Elsevier Academic Press publications, 1172pp, 2007.
[33] Abramowitz M., and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, INC., New York, 1045pp, 1972.
[34] Moench, A. F., Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer, Water Resour. Res., 33(6), 1397–1407, 1997.