跳到主要內容

簡易檢索 / 詳目顯示

研究生: 詹葆蘐
Pao-Hsuan Chan
論文名稱: 年齡在視覺工作記憶的效應之腦波研究
The age-related effect on binding in visual working memory: An EEG study
指導教授: 阮啟弘
Chi-Hung Juan
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 認知與神經科學研究所
Graduate Institute of Cognitive and Neuroscience
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 80
中文關鍵詞: 視覺工作記憶老化alpha波
外文關鍵詞: visual working memory, aging, alpha power
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口高齡化,老化造成認知功能衰退的問題日趨嚴重,老化與認知功能的關係之研究也越來越被重視,其中工作記憶是高級認知功能的重要指標,也是認知老化基礎理論之一,過去的相關研究由於工作記憶的內部結構複雜以及研究者採用的實驗作業和實驗設置不一,使得研究結果分岐,總結來說,強調執行加工能力的工作記憶作業有較大的年齡效應,而以視覺空間為記憶材料的作業較以語言為材料的作業更容易受老化影響。然而工作記憶與老化的神經機制透過腦波技術的協助漸漸被了解,腦波是群體神經元同步振盪的結果,神經振盪的頻率以及power的改變與老化相關,其中alpha頻率範圍的腦波尤其被認為與執行工作記憶作業中,注意力集中在外部訊息以及保持記憶件的表現相關,過去研究顯示,刺激前的alpha power與隨後的表現相關,而編碼階段alpha power change (刺激前alpha power減去編碼階段的alpha power; alpha suppression)也與處理刺激的能力相關,但目前工作記憶力老化與alpha波之間的關聯尚未有系統化的文獻。

    本研究為了瞭解老化與工作記憶的關係,募集39位年輕人(19-39歲)、30位中年人(40-64歲)和30位老年人(65歲以上)的健康受試者進行實驗,實驗中受試者將進行強調執行加工能力的工作記憶結合作業,隨後依據受試者進行工作記憶結合作業時的回答和腦波紀錄進行結果分析,分析方法根據信號偵測理論計算Pashler’s K value、d’和反應時間來做行為表現的指標,並且利用希爾伯特-黃轉換(Hilbert-Huang Transform, HHT)中遮罩的經驗模態分解法(Masking Empirical Mode Decomposition, Masking EMD)進行腦波分析,取第5個本質模態函數作為alpha波,計算枕葉電極的power平均值為腦波的指標。

    分析結果顯示,中年人組與年輕人組的行為表現結果在Pashler’s K 和d’的數值無達顯著差異標準(p<0.05),但在反應時間中,中年人組較年輕人組反應時間長達顯著標準,然而,老年人組的行為表現在三個指標中皆較年輕人組和中年人組表現差達顯著標準,此結果與其他用不同工作記憶力作業的老化相關研究有類似的趨勢。而在腦波的分析結果主要發現刺激前alpha power在老年人組較年輕人組低達顯著標準,中年人組與年輕人組在刺激前alpha power無顯著差異,進一步分析發現刺激前alpha power與Pashler’s K value和d’皆呈正相關達顯著標準,並與反應時間皆呈負相關達顯著標準,另外,在編碼階段alpha suppression的腦波指標中,年輕人組較中年人組和老年人組達顯著差異,而編碼階段alpha suppression與Pashler’s K value和d’皆呈顯著正相關。

    總結而言,本研究重驗了過去工作記憶力隨老化下降的結果,並提出刺激前alpha power和編碼階段alpha suppression與工作記憶老化的關係,提供工作記憶表現與老化機制的客觀指標。


    With aging, the issue and emphasis on cognitive decline among human population has become more serious. Research addressing the relationship between aging and cognitive function has also been receiving greater attention recently. Among all the cognitive functions, working memory is considered to be one of the most sensitive ones to aging. In prior studies, the complex internal structure of working memory and the experimental assignments and experimental settings used by the researchers are different, making the research results diverse and complex. In summary, working memory tasks that emphasize the ability to perform processing have a greater age effect. However, in order to better comprehend the brain mechanism of working memory decline, researchers used electroencephalography (EEG) in the study and proposed that neural oscillations and their synchronization play an important role in cognitive functions that require rapid formation of neural assemblies, such as visual working memory. Alpha power is believed to be related to the performance of focusing on external information and maintaining memory in the execution of working memory tasks. Past studies have shown that the alpha power before stimulation is related to the subsequent performance, and the alpha suppression in the encoding phase is also related to the ability to process stimuli, but there is currently no systematic literature on the relationship between aging of working memory and alpha power.

    In order to understand the relationship between aging and working memory, the current study recruited 39 young adult (19-39 years old), 30 middle-aged (40-64 years old) and 30 elderly participants (over 65 years old). All participants had done working memory binding task that emphasize the ability to perform processing, with recoding EEG simultaneously. The analysis method calculation was used Pashler's K value, d' and reaction time according to the signal detection theory. EEG analysis used the masking empirical mode decomposition in the Hilbert-Huang Transform. We took the 5th intrinsic mode function as the alpha wave, and calculates the average power of the occipital lobe electrode as the EEG index.

    It was observed that the behavioral performance results of the middle-aged group and the young group did not reach the standard of significant difference in Pashler's K and d', but the reaction time of the middle-aged group was significantly longer than that of the young group. However, the behavioral performance of the elderly group is significantly worse than that of the young and middle-aged groups in all three indicators. These results had a similar trend with other aging-related studies using different working memory tasks.

    In the EEG results, It was observed that prestimulus alpha power is significantly lower in the elderly group than the young group and there is no significant difference between the middle-aged group and the young group. Further analysis, positive correlation between the prestimulus alpha power and Pashler's K value / d' was observed, while negative correlation between the prestimulus alpha power and reaction time was observed. In addition, the young group is significantly different from the middle-aged group and the elderly group on the value of alpha suppression in the encoding stage. Positive correlation between the alpha suppression in the encoding stage and Pashler's K value / d' was observed.

    In summary, this study replicates the results of the decline in working memory with aging in the past, and proposes the relationship between alpha power before stimulation and alpha suppression in encoding stage and working memory aging, and provides objective indicators of working memory performance and aging mechanisms.

    中文摘要 i 英文摘要(Abstract) iii 致謝 vi Table of contents vii List of Figures ix List of Tables xii Chapter 1 Introduction - 1 - 1.1 Working memory - 1 - Working memory capacity - 3 - Binding in visual working memory - 4 - 1.2 Aging and working memory - 7 - Middle-age and working memory - 7 - 1.3 Working memory in aging and neural oscillation - 8 - 1.4 EEG analysis method using Hilbert-Huang Transform (HHT) - 9 - Chapter 2 Method - 11 - 2.1 Participant - 11 - 2.2 Questionnaire - 13 - Mini-Mental State Examination (MMSE) - 13 - 2.3 Apparatus - 14 - Electroencephalography protocol - 14 - 2.4 Visual Working Memory Binding Task - 15 - Stimuli - 15 - Task - 16 - 2.5 Behavioral analysis - 17 - 2.6 Hilbert-Huang transform - 19 - 2.7 Alpha power calculation - 20 - Chapter 3 Result - 21 - 3.1 Behavioral result - 21 - 3.1.1 Pashler’s K value (Kp) - 21 - 3.1.2 d’ - 25 - 3.1.3 Reaction time - 32 - 3.2 Electroencephalography result - 39 - 3.3 Correlation between alpha power in fixation and three behavioral indexes - 52 - 3.4 Correlation between alpha power change in encoding and three behavioral indexes - 54 - Chapter 4 Discussion and Conclusion - 55 - 4.1 Behavioral performance in visual working memory binding task. - 55 - 4.2 Alpha power in visual working memory binding task. - 57 - Limitation - 58 - Reference - 59 -

    Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228-3233.
    Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228-3233.
    Baddeley, A. (2000). The episodic buffer: a new component of working memory?. Trends in Cognitive Sciences, 4(11), 417-423.
    Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of Learning and Motivation (Vol. 8, pp. 47-89). Academic press.
    Baddeley, A. D., Allen, R. J., & Hitch, G. J. (2011). Binding in visual working memory: The role of the episodic buffer. Neuropsychologia, 49(6), 1393-1400.
    Bastin, C. (2018). Differential age-related effects on conjunctive and relational visual short-term memory binding. Memory, 26(9), 1181-1190.
    Borg, C., Leroy, N., Favre, E., Laurent, B., & Thomas-Antérion, C. (2011). How emotional pictures influence visuospatial binding in short-term memory in ageing and Alzheimer’s disease?. Brain and Cognition, 76(1), 20-25.
    Brockmole, J. R., & Logie, R. H. (2013). Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Frontiers in Psychology, 4, 12.

    Brockmole, J. R., Parra, M. A., Della Sala, S., & Logie, R. H. (2008). Do binding deficits account for age-related decline in visual working memory?. Psychonomic Bulletin & Review, 15(3), 543-547.
    Brown, L. A., & Brockmole, J. R. (2010). The role of attention in binding visual features in working memory: Evidence from cognitive ageing. Quarterly Journal of Experimental Psychology, 63(10), 2067-2079.
    Brown, L. A., Niven, E. H., Logie, R. H., Rhodes, S., & Allen, R. J. (2017). Visual feature binding in young and older adults: Encoding and suffix interference effects. Memory, 25(2), 261-275.
    Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85.
    Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S., ... & Craik, F. I. (1997). Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. Journal of Neuroscience, 17(1), 391-400.
    Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.
    Cowan, N., Naveh-Benjamin, M., Kilb, A., & Saults, J. S. (2006). Life-span development of visual working memory: When is feature binding difficult?. Developmental Psychology, 42(6), 1089.
    Fandakova, Y., Sander, M. C., Werkle-Bergner, M., & Shing, Y. L. (2014). Age differences in short-term memory binding are related to working memory performance across the lifespan. Psychology and Aging, 29(1), 140.
    Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118.
    Gazzaley, A., & D'esposito, M. (2007). Top-down modulation and normal aging. Annals of the New York Academy of Sciences, 1097(1),67–83.
    Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D’Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35), 13122–13126.
    Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374–385.
    Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology, 48(12), 1711–1725.
    Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bäuml, K. H. (2007). Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage, 37(4), 1465-1473.
    Hsu, T. Y., Juan, C. H., & Tseng, P. (2016). Individual differences and state-dependent responses in transcranial direct current stimulation. Frontiers in Human Neuroscience, 10, 643.
    Hsu, T. Y., Tseng, P., Liang, W. K., Cheng, S. K., & Juan, C. H. (2014). Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. Neuroimage, 98, 306-313. Baddeley, A. (2000). The episodic buffer: a new component of working memory?. Trends in cognitive sciences, 4(11), 417-423.

    Isella, V., Molteni, F., Mapelli, C., & Ferrarese, C. (2015). Short term memory for single surface features and bindings in ageing: A replication study. Brain and Cognition, 96, 38-42.
    Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186.
    Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex (New York, N.Y. : 1991), 12(8), 877–882.
    Klaassen, E. B., Evers, E. A., de Groot, R. H., Backes, W. H., Veltman, D. J., & Jolles, J. (2014). Working memory in middle-aged males: Age-related brain activation changes and cognitive fatigue effects. Biological Psychology, 96, 134-143.
    Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26(1), 319–340.
    Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2), 169–195.
    Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12),
    Krause, C. M., Sillanmäki, L., Koivisto, M., Saarela, C., Häggqvist, A., Laine, M., & Hämäläinen, H. (2000). The effects of memory load on event-related EEG desynchronization and synchronization. Clinical Neurophysiology, 111(11), 2071–2078.
    Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell'Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512.

    Martínez, J. F., Trujillo, C., Arévalo, A., Ibáñez, A., & Cardona, J. F. (2019). Assessment of conjunctive binding in aging: A promising approach for Alzheimer’s disease detection. Journal of Alzheimer's Disease, 69(1), 71-81.
    Meltzer, J. A., Zaveri, H. P., Goncharova, I. I., Distasio, M. M., Papademetris, X., Spencer, S. S., Spencer, D. D., & Constable, R. T. (2008). Effects of working memory load on oscillatory power in human intracranial EEG. Cerebral Cortex (New York, N.Y. : 1991), 18(8), 1843–1855.
    Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10(1-2), 197-206.
    Neuper, C., & Pfurtscheller, G. (2001). Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. International Journal of Psychophysiology, 43(1), 41-58.
    Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299.
    Parra, M. A., Abrahams, S., Logie, R. H., Mendez, L. G., Lopera, F., & Della Sala, S. (2010). Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain, 133(9), 2702-2713.
    Parra, M. A., Della Sala, S., Logie, R. H., & Morcom, A. M. (2014). Neural correlates of shape–color binding in visual working memory. Neuropsychologia, 52, 27-36.
    Pesonen, M., Hämäläinen, H., & Krause, C. M. (2007). Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain Research, 1138, 171–177.

    Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842-1857.
    Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16(2), 283-290.
    Proskovec, A. L., Heinrichs-Graham, E., & Wilson, T. W. (2019).Load modulates the alpha and beta oscillatory dynamics serving verbal working memory. NeuroImage, 184, 256–265.
    Rajagovindan, R., & Ding, M. (2010). From prestimulus alpha oscillationto visual-evoked response: An inverted-U function and its attentional modulation. Journal of Cognitive Neuroscience, 23(6).
    Read, C. A., Rogers, J. M., & Wilson, P. H. (2016). Working memory binding of visual object features in older adults. Aging, Neuropsychology, and Cognition, 23(3), 263-281.
    Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12(1), 174-187.
    Rhodes, S., Parra, M. A., & Logie, R. H. (2016). Ageing and feature binding in visual working memory: The role of presentation time. Quarterly Journal of Experimental Psychology, 69(4), 654-668.
    Rhodes, S., Parra, M. A., Cowan, N., & Logie, R. H. (2017). Healthy aging and visual working memory: The effect of mixing feature and conjunction changes. Psychology and Aging, 32(4), 354.

    Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 324-330.
    Salthouse, T. A. (1994). The aging of working memory. Neuropsychology, 8(4), 535.
    Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., Gruber, W. R., & Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22(11), 2917–2926
    Song, J. H., & Jiang, Y. (2006). Visual working memory for simple and complex features: an fMRI study. NeuroImage, 30(3), 963–972.
    Stipacek, A., Grabner, R. H., Neuper, C., Fink, A., & Neubauer, A. C.(2003). Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neuroscience Letters, 353(3), 193–196.
    Tsai FF, Fan SZ, Lin YS, Huang NE, Yeh JR (2016) Investigating Power Density and the Degree of Nonlinearity in Intrinsic Components of Anesthesia EEG by the Hilbert-Huang Transform: An Example Using Ketamine and Alfentanil. PLOS ONE 11(12): e0168108.
    Tseng, P., Chang, Y. T., Chang, C. F., Liang, W. K., & Juan, C. H. (2016). The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Scientific Reports, 6(1), 1-15.
    Tseng, P., Hsu, T. Y., Chang, C. F., Tzeng, O. J., Hung, D. L., Muggleton, N. G., ... & Juan, C. H. (2012). Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32(31), 10554-10561.
    van Dijk, H., van der Werf, J., Mazaheri, A., Medendorp, W. P., & Jensen, O. (2010). Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses. Proceedings of the National Academy of Sciences, 107(2), 900-905.
    Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751.
    Wild-Wall, N., Falkenstein, M., & Gajewski, P. D. (2011). Age-related differences in working memory performance in a 2-back task. Frontiers in Psychology, 2, 186.

    QR CODE
    :::