| 研究生: |
黃福銘 Fu-ming Huang |
|---|---|
| 論文名稱: |
知識融合之研究:探索啟發式最佳化方法之成效 Knowledge Fusion Success:Exploring the Role of Heuristic Optimization |
| 指導教授: |
楊鎮華
Jenn-Hwa Yang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 知識融合、啟發式最佳化方法、貓最佳化演算法、多目標最佳化、模糊知識 |
| 外文關鍵詞: | Fuzzy knowledge, Multi-objective optimization, CatOpt algorithm, Heuristic optimization, Knowledge fusion |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
知識融合一直是知識工程中極具挑戰性的研究議題,本論文的目標是探索啟發式最佳化方法對於模糊知識融合之成效,以往有很多啟發式最佳化方法已經被提出來解決最佳化的問題,而這些方法最有趣的特性就是奠基於自然現象與生物行為。令人振奮地,野貓的天性和其獨行者般的智慧觸發本論文設計一個創新的啟發式最佳化演算法,本論文提出了貓最佳化演算法以及建立一個以貓最佳化演算法為核心的模糊知識融合系統;其中,知識編碼與知識最佳化機制將同時融合多個模糊知識庫。為了證明貓最佳化演算法的效率,本論文利用著名的非線性函式將貓最佳化演算法與其他啟發式演算法做實驗比較,實驗結果證實了其高搜尋效益;在實證研究中,本論文利用程式設計學習風格診斷知識之融合應用案例來分析驗證此模糊知識系統的系統效益與使用者接受度。
Knowledge fusion is always a challenging research topic in knowledge engineering area. The objective of this dissertation is exploring heuristic optimization method to succeed fuzzy knowledge fusion. Several heuristic optimization methods had been proposed to solve optimization problems previously. The most interesting characteristic of these methods is that these methods are based on natural phenomena and animal behavior. Excitingly, the instincts of wild cats and loner intelligence trigger the dissertation to devise a novel heuristic optimization algorithm. This dissertation proposed a CatOpt algorithm and developed a CatOpt-based fuzzy knowledge fusion system. Among which, the knowledge encoding and knowledge optimization can fuse multiple fuzzy knowledge bases simultaneously. To demonstrate the effectiveness of the CatOpt algorithm, the dissertation compared this method with other heuristic methods by using well-known nonlinear equations. The experimental results confirmed the high search performance of the proposed algorithm. In the empirical study, application of fusion of programming learning style diagnosis knowledge was used to demonstrate the system efficacy and user acceptance.
Abdennadher, S. & Fruhwirth, T. (2004). Integration and Optimization of Rule-Based Constraint Solvers. Lecture Notes in Computer Science, Springer, 2004(3018), 198-213.
Abrami, P. C., & Barrett, H. (2005). Directions for research and development on electronic portfolios. Canadian Journal of Learning and Technology, 31(3). [<http://www.cjlt.ca/abstracts.html>].
Ambrose, J. (2007). Feral cats and Christians, Lulu.com, ISBN: 1430316942, March.
Andrew, H.W., Stashuk, D.W. & Tizhoosh, H.R. (2007). Fuzzy Classification Using Pattern Discovery. IEEE Transactions on Fuzzy Systems, 15(5), 772-783.
Angus, F.M.H., Shin, B.H., Evan, Y.F.L., & Stephen J.H.Y. (2008). Improving End-User Programming with Situational Mashups in Web 2.0 Environment. The Fourth IEEE International Symposium on Service-Oriented System Engineering (SOSE 2008), Taiwan.
Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40(4), 199–209.
Bargiela, A. & Pedrycz, W. (2003). Recursive information granulation: aggregation and interpretation issues. IEEE Transactions on Systems, Man, and Cybernetics, Part B,33(1), 96-112.
Barrett, H. C. (2005). White paper: Researching electronic portfolios and learner engagement. In The REFLECT initiative: Researching electronic portfolios: Learning, engagement, collaboration through technology. <http://electronicportfolios.com/reflect/whitepaper.pdf> Retrieved October 2008.
Barrett, H. C. (2009). Online personal learning environments: Structuring electronic portfolios for lifelong and life wide learning. On the Horizon, 17(2), 142–152. <http://docs.google.com/Doc?id=dd76m5s2_39fsmjdk> Retrieved 13.12.09.
Bellini, A., Filippetti, F., Tassoni, C. & Capolino, G.A. (2008). Advances in Diagnostic Techniques for Induction Machines. IEEE Transactions on Industrial Electronics, 55(12), 4109-4126.
Bland, J.A. (2001). Optimal structural design by ant colony optimization, Engineering Optimization, 4(33), 425-443.
Bradshaw, J.W.S., Horsfield, G.F., Allen, J.A. & Robinson, I.H. (1999). Feral cats: their role in the population dynamics of Felis catus, Applied Animal Behaviour Science, 65(3) 273–283.
Brown, S.L. & Bradshaw, J.W.S. (1993). Classification of social behaviour patterns in feral domestic cats, Applied Animal Behaviour Science, 35(3) 294.
Cambridge, B. (Ed.). (2001). Electronic portfolios. Emerging practices in student, faculty, and institutional learning. Sterling, VI: Stylus Publishing.
CatSite.com, (2000) Cat Behavior, http://www.thecatsite.com/Cats/Cat_Behavior.html
Celikyilmaz, A. & Burhan T.I. (2008). Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm. IEEE Transactions on Fuzzy Systems, 16(3), 779-794.
Chen, D., & Zhao, C. (2009). Data-driven fuzzy clustering based on maximum entropy principle and PSO, Expert Systems with Application, 36(1), 625-633.
Chen, G.-D., Ou, K.-L., & Wang, C.-Y. (2003). Use of group discussion and learning portfolio to build knowledge for managing web group learning. Journal of Educational Computing Research, 28(3), 291–315.
Chen, S.M. & Bai, S.M. (2009). Learning barriers diagnosis based on fuzzy rules for adaptive learning systems. Expert Systems with Applications, In Press, Corrected Proof.
Chowdhury, S.R.S. & Hiranmay, S. (2008). A High-Performance FPGA-Based Fuzzy Processor Architecture for Medical Diagnosis. IEEE Micro, 28(5), 38-52.
Chu, S.C. & Tsai, P.W. (2007). Computational intelligence based on the behavior of cats, International Journal of Innovative Computing, Information and Control, 3(1) 163–173.
Coello, C.A.C. & Veldhuizen, D.A.V. (2002). G.B. Lamont. Evolutionary algorithms for solving multi-objective problems, Kluwer Academic Publishers, New York.
Coello, C.A. & Becerra, R.L. (2004). Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization. 2(36), 219-236.
Cordon, O. & Herrera, F. (1997). A three-stage evolutionary process for learning descriptive and approximative fuzzy logic controller knowledge bases from examples. Int. J. Approxi. Reas., 4(17), 369-407.
Davis, F. D. (1986). Technology acceptance model for empirically testing new end-user information systems: Theory and results. MA, USA: Massachussetts Institute of Technology.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339.
Davis, F.D., Bagozzi, R.P. & Warshaw, P.R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982 – 1003.
Deb K. (2002). Multi-objective optimization using evolutionary algorithms, Wiley & Sons, New York.
Delgado, J.C & Jensen, P.E. (2008). Cat and mouse. Nature Immunology. 9, 829–830.
DeLone, W.H., & McLean, E.R. (1992). Information system success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95.
Dong, H., He, J., Huang, H. & Hou, W. (2007). Evolutionary programming using a mixed mutation strategy, Information Sciences, 177(1), 312–327.
Dorigo, M., Maniezzo, V. & Colorni, A. (1996). Ant System: Optimization by a colony of cooperating agents, IEEE Transactions on System, Man, and Cybernetics-part B: Cybernetics, 26(1) 29–41.
Echauz, J.R., & Vachtsevanos, G.J. (1995). Fuzzy Grading System. IEEE Transactions on Education, 2(38), 158-165.
Felder R.M. & Silverman L.K. (1988). Learning and Teaching Styles in Engineering Education. Engineering Education, 78(7), 674-681.
Formato, R.A. (2008). Central force optimization: a new nature inspired computational framework for multidimensional search and optimization, Studies in Computational Intelligence,129, 221–238.
Fukuda, T. & Kubota, N. (1999). An intelligent robotic system based on a fuzzy approach. Proceedings of the IEEE, 87(9), 1448-1470.
Ge, H.W., Sun, L., Liang, Y.C., & Qian, F. (2008). An Effective PSO and AIS-Based Hybrid Intelligent Algorithm for Job-Shop Scheduling. IEEE Transactions on Systems, Man and Cybernetics, Part A, 38(2), 358-368.
Harman M. & Jones B.F. (2001). Search-based software engineering. Information and Software Technology, 43, 833-839.
Held, C.M., Heiss, J.E., Estevez, P.A., Perez, C.A., Garrido, M., Algarin, C. & Peirano, P. (2006). Extracting Fuzzy Rules From Polysomnographic Recordings for Infant Sleep Classification. IEEE Transactions on Biomedical Engineering, 53(10), 1954-1962.
Hillyer, J., & Ley, T. C. (1996). Portfolios and second graders’ self-assessments of their development as writers. Reading Improvement, 133, 148–159.
Holland, J.H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor.
Hope, J. (2005). Student portfolios: Documenting success. Techniques Making Education and Career Connections, 79(5), 26–31.
Hopgood, A.A. & Hirst, A.J. (2007). Keeping a distance-education course current through eLearning and contextual assessment. IEEE Transactions on Education, 1(50), 85-96.
Hwang, H. S. (1999). Automatic design of fuzzy rule base for modeling and control using evolutionary programming. IEE Proceedings – Control Theory Applications, 146(1), 9–16.
Ishibuchi, H. & Yamamoto, T. (2004). Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems, 1(141), 59-88.
Juang, C. -F., & Wang, C.-Y. (2009). A self-generating fuzzy system with ant and particle swarm cooperative optimization, Expert Systems with Application, 36(3), 5362-5370.
Kankaanranta, M., Barrett, H. C., & Hartnell-Young, E. (2001). Exploring the use of electronic portfolios in international contexts. In Proceedings of world conference on educational multimedia. Hypermedia and telecommunications (pp. 874–876). Norfolk, VA: AACE.
Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks. 4. 1942-1948.
Kennedy, J., & Eberhart, R.C. (1997). A discrete binary version of the particle swarm algorithm. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Piscataway, NJ. 4104-4108.
Kimball, M. A. (2003). The web portfolio guide. New York: Longman.
Klawonn, F. & Keller, A. (1995). Fuzzy clustering with evolutionary algorithms. International Conference on Neural Networks, Perth, Australia, 1942-1948.
Knowles, J.D., Thiele, L. & Zitzler, E. (2005). A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report No. 214, ETH Zurich.
Kolman, E. & Margaliot, M. (2007). Knowledge Extraction From Neural Networks Using the All-Permutations Fuzzy Rule Base: The LED Display Recognition Problem. IEEE Transactions on Neural Networks, 18(3), 925-931.
Langdon, W.B. & Poli, R. (2002). Foundations of Genetic Programming, Springer, New York.
Lee, Z.J. & Lee, C.Y. (2005). A hybrid search algorithm with heuristics for resource allocation problem, Information Sciences, 173 (1–3) 155–167.
Lekova, A., Mikhailov, L., Boyadjiev, D., & Nabout, A. (1998). Redundant fuzzy rules exclusion by genetic algorithms. Fuzzy Sets and Systems, 1-3(100), 235-243.
Liang, J.J., Qin, A.K., Suganthan, P.N. & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 3(10), 281-295.
Liaw, S. S., & Huang, H. M. (2003). An investigation of user attitudes toward search engines as an information retrieval tool. Computers in Human Behavior, 19(6), 751–765.
Liping, L., Shenoy, C. & Shenoy, P.P. (2006). Knowledge representation and integration for portfolio evaluation using linear belief functions. IEEE Transactions on Systems, Man and Cybernetics, Part A. 4(36), 774-785.
Lopez-Fernandez O, & Rodriguez-Illera J.L. (2009). Investigating university students’ adaptation to a digital learner course portfolio. Computers & Education, 52(3), 608-616.
Marin, N., Molina, C., Serrano, J.M. & Vila, M.A. (2008). A Complexity Guided Algorithm for Association Rule Extraction on Fuzzy DataCubes. IEEE Transactions on Fuzzy Systems, 16(3), 693-714.
Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, 3rd edition.
Monmarche, N., Venturini, G. & Slimane, M. (2000). On how Pachycondyla apicalis ants suggest a new search algorithm, Future Generation Computer Systems, 16(8) 937–946.
Nature (2009). Biotech fat cats, Nature Biotechnology 27 2009 404–404, doi: 10.1038 / nbt0509-404b News.
Ngai, E. W. T., Poon, J. K. L., & Chan, Y. H. C. (2007). Empirical examination of the adoption of WebCT using TAM. Computers and Education, 48(2), 250–267.
Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley.
Polat, K. & Güneş, S. (2009). A new method to forecast of Escherichia coli promoter gene sequences: Integrating feature selection and Fuzzy-AIRS classifier system. Expert Systems with Applications, 36(1), 57-64.
Poole, D., Mackworth, A. & Goebel, R. (1998). Computational Intelligence: A Logical Approach, Oxford University Press.
Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information Systems Research, 13(1), 50–69.
Rashedi, E., Nezamabadi, P.H. & Saryazdi, S. (2009). GSA: A gravitational search algorithm, Information Sciences, 179 (13), 2232–2248.
Riedinger, B. (2006). Mining for meaning: Teaching students how to reflect. In A. Jafari & C. Kaufman (Eds.), Handbook of research on eportfolios (pp. 90–101). Hershey, PA: Idea Group.
Salman, A., Ahmad, I. & Sabah, A.M. (2002). Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 26(8), 363-371.
Sanchis, J., Martínez, M.A. & Blasco, X. (2008). Integrated multiobjective optimization and a priori preferences using genetic algorithms, Information Sciences, 178(4) 931–951.
Sarker, R.A. & Newton, C.S. (2007). Optimization modelling. CRC Press Taylor & Francis Group, Boca Raton London New York.
Serrurier, M. & Prade, H. (2008). Improving inductive logic programming by using simulated annealing, Information Sciences, 178(6) 1423–1441.
Shi, Y. & Eberhart, R. (1998). Parameter selection in particle swarm optimization. Proceedings of the 1998 Annual Conference on Evolutionary Programming, San Diego: MIT Press, 591–600.
Sorensen, E. K., & Takle, E. S. (1999). Distributed collaborative learning across disciplines and national borders: Structuring throw virtual portfolios. In C. M. Hoadley & J. Roschelle (Eds.). Proceedings of the computer support for collaborative learning (CSCL) 1999 conference (pp. 575–581). Palo Alto, CA: Stanford University <http:// www.hum.aau.dk/vipol/papers/elsebeth/portfolio.htm> Retrieved October 2008.
Sze, S.N. & Tiong, W.K. (2007). A comparison between heuristic and meta-heuristic methods for solving the multiple traveling salesman problem, International Journal of Computational and Mathematical Sciences, (3)1, 200–203.
Tosh, D., & Werdmuller, B. (2005). Creations of a personal learning landscape: homogenizing weblogging, social networking and eportfolios. In Proceedings of international conference of eportfolio 2005 by European institute for e-learning (EIFEL). UK: Cambridge.
Wang, C.H., Hong, T.P., & Tseng, S.S. (1998). Integrating fuzzy knowledge by genetic algorithms. IEEE Transactions on Evolutionary Computation, 2(4), 138-149.
Wang, C.H., Hong, T.P., Chang, M.B., & Tseng, S.S. (2000). A coverage-based genetic knowledge-integration strategy. Expert Systems with Application, 19(1), 9-17.
Wang T.C., & Lin, Y.L. (2009). Applying the consistent fuzzy preference relations to select merger strategy for commercial banks in new financial environments. Expert Systems with Applications, 36(3), 7019-7026.
Wang W.P. (2009). Evaluating new product development performance by fuzzy linguistic computing. Expert Systems with Applications, 36(6), 9759-9766.
Whitley, D., Mathias, K., Rana, S. & Dzubera, J. (1995). Building better test functions, In L. Eshelman, editor, Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco, California, 239–246.
Wolpert, D.H. & Macready, W.G. (1997). No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation, 1(1), 67–82.
Yamane, J. & Emoto, N.F. (1997). Factors affecting feeding order and social tolerance to kittens in the group-living feral cat (Felis catus), Applied Animal Behaviour Science, 52(1–2), 119–127.
Yang, S.J.H., Tsai, J.J.P., & Chen, C.C. (2003). Fuzzy Rule Base Systems Verification Using High Level Petri Nets, IEEE Transactions on Knowledge and Data Engineering, 15(2), 457-473.
Yang, S. J. H. (2006). Context Aware Ubiquitous Learning Environments for Peer-to-Peer Collaborative Learning. Educational Technology & Society, 9 (1), 188-201.
Yao, X., Liu, Y. & Lin, G. (1999). Evolutionary programming made faster, IEEE Transaction on Evolutionary Computation, 3, 82–102.
Zeng, X.J., & Singh, M.G. (1996). Approximation accuracy analysis of fuzzy systems as functionapproximators. IEEE Transactions on Fuzzy Systems, 4(1), 44-63.
Zhao, L. & Yang, Y. (2009). PSO-based single multiplicative neuron model for time series prediction. Expert Systems with Applications, 36(2), 2805-2812.
Zimmerman, B. J. (2000). Attaining self-regulation: A social-cognitive perspective. In M. Boekaerts & P. R. Pintrich (Eds.), Handbook of self-regulation (pp. 13–39). New York: Academic Press.
Zitzler, E., Deb, K. & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: empirical results, Evolutionary Computation, 8(2), 149–172.
Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A tutorial on evolutionary multiobjective optimization. Proceedings of the Workshop on Multiple Objective Metaheuristics.
Zubizarreta, J. (2004). The learning portfolio: Reflective practice for improving student learning. San Francisco, CA: Anker Publishing Company, Inc..