| 研究生: |
邱芝帆 Chih-fan Chiu |
|---|---|
| 論文名稱: |
孔隙水壓模式對紅菜坪地滑區穩定性之影響 The influence of pore pressure model on stability of Hungtsaiping area |
| 指導教授: |
董家鈞
Jia-jyun Dong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 崩積層.水文地質 、紅菜坪地滑區 、孔隙水壓 、邊坡穩定 |
| 外文關鍵詞: | slope stability, pore pressure, Hungtsaiping landslide, colluvial, hydrogeological |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
滑動面上孔隙水壓分布對崩積層與岩盤交界面滑動之地滑地活動性影響甚巨;然而,緣於崩積層材料高度異質性及其下伏岩層岩性變化與地質構造複雜,因此,增加了地滑區水文地質特性調查與分析的困難性。本研究以南投縣中寮鄉紅菜坪地滑區為研究區域,紅菜坪地滑區位於中新世砂頁岩互層之節理岩盤上,廣布級配不良且富含黏土材料之崩積層。本研究以三種不同孔隙水壓推估方法,計算紅菜坪地區崩積層與岩盤交界面之孔隙水壓分布:(1)經現地監測孔隙水壓資料校正之邊坡地下水流有限差分數值模式;(2)水壓監測之孔隙水壓比平均值;(3)假設滑動面上總水頭為線性分布。上述三種方法所得滑動面上之孔隙水壓值,即進一步可提供作為邊坡穩定分析輸入條件,並利用邊坡穩定極限平衡法分析,計算不同孔隙水壓分布模式所得到邊坡之安全係數。結果發現不同孔隙水壓推估模式,所得之孔隙水壓分布對安全係數計算結果有一定程度的影響,其中利用數值模式以及總水頭線性分布假設計算得孔隙水壓作為邊坡穩定分析條件者,安全係數值較高,分別為FS=1.75以及FS=1.71;利用孔隙水壓比獲得孔隙水壓並進行邊坡穩定分析所獲得之安全係數則較低(FS=1.54)。另外,本研究根據地下水流動數值模式計算得滑動面之孔隙水壓值以及折減之地震力係數,進行集集地震強度參數逆分析,利用邊坡穩定極限平衡法逆推所得之抗剪摩擦角(34o)較前人利用Newmark位移法(未考慮孔隙水壓)所得到的值(30.7o)為高。然而,此逆推值較一般認為崩積層與滑動面之抗剪摩擦角高許多,紅菜坪地區於滑動時造成之超額孔隙水壓的影響,值得進一步深入探討。最後,本研究分析紅菜坪地區崩積層內發生局部滑動的情形,分析結果顯示,紅菜坪地滑區滑動塊體A常時之局部穩定性安全係數為1.27,因滑動面孔隙水壓變化受降雨影響不大,故控制滑動塊體A局部穩定性之主要因素為邊坡坡趾河岸侵蝕與地震力。
The distribution of pore pressure on sliding surface intensely influenced the activity of a landslide sliding along the interface of colluvial and bedrock. Since the colluvial is heterogeneous and the geologic structure of the underlying bed rock is complex, it is difficult to investigate and analyze the hydrogeological characteristics of a landslides sliding along the interface of colluvial and bedrock. This research focus on the Hungtsaiping landslide which the poorly graded and clay rich colluvial deposit on the Miocene sedimentary rock were moved during and after the Chi-Chi earthquake. Three different methods were used to estimate the pore pressure distributed on the interface of colluvial and bedrock: (1) calibrated finite difference numerical model, (2) averaged pore pressure ratio, and (3) assuming linear distribution of the total head on the sliding surface. Limit equilibrium method was used to calculate the safety factor of the landslide along the interface of colluvial and bedrock. The pore pressure distributed along the sliding surface was derived from the three methods mentioned above. The safety factors are 1.75 and 1.71 if the pore pressure along the sliding surface was derived from the numerical method and assuming linear distribution of the total head on the sliding surface, respectively. The safety factor is 1.54 if the pore pressure along the sliding surface was derived from an averaged pore pressure ratio. The back calculated friction angle of sliding surface with the pore pressure derived from the numerical model is 34 o. The friction angle is higher than the one (30.7 o) calibrated from Newmark method (not to consider pore pressure). Finally, the stability of local failure occur in the colluvial was evaluated. The safety factor under normal condition is 1.27. Since the pore pressure variation is small during the heavy rainfall, the local stability will mainly govern by the erosion of the toe of the landslide, as well as the earthquake.
1. Abramson, L. W., Thomas, S. L., Sharma S., and Boyce, G. M., 1995. “Slope stability and stabilization methods.” John Wiley & Sons, Inc., New York, 629p.
2. Achilleos, E. 1988. “User guide for PCSRABL5M.” Joint Highway Research Rep. No. Jhrp-88/19, Purdue Univ., West Lafaywtte, Ind.
3. Das, B. M., 2002. “Principles of geotechnical engineering”, Brook/Cole Publisher, Boston, 143p.
4. Fleming, R. W., and Johnson, A. M., 1994.“Landslide in colluvium.” U.S. Geological Survey Bulletin 2059-B.
5. Freeze, R. A., and Witherspoon, P. A., 1967. “Theoretical analysis of regional groundwater flow 2. Effect of water table configuration and subsurface permeability variation.” Water Resources Research, vol. 3, No2, pp. 623-634.
6. Freeze, R. A., and Witherspoon, P. A., 1968. “Theoretical analysis of regional groundwater flow 3. Quantitative interpretations.” Water Resources Research, vol. 4, No3, pp. 581-590.
7. GEO, 1984. Geotechnical Manual for Slope, Geotechnical Engineering Office, Civil Engineering Department, second edition, Hong Kong, pp.300.
8. Harr, M. E., 1962. “Groundwater and seepage.” Mcgraw-Hill Book Company. New York.
9. Haneberg, W.C., and Gökce, A. Ö., 1994. “Rapid water-level fluctuations in a thin colluvium landslide west of Cincinnati, Ohio.” U.S. Geological Survey Bulletin 2059-C.
10. Hoek, E., and Bray, J., 1981. “Rock slope engineering.” 3rd ed., The Institution of Mining and Metallurgy, London, 127-148pp.
11. Jiao, J.J., Ding, G., and Leung, C. M., 2006. “Confined groundwater near the rockhead in igneous rocks in the Mid-Levels area, Hong Kong, China.” Engineering Geology , No.84, pp207-219.
12. Kim, J. M., Rodrigo, S., and Lee, J. W., “Stability analysis of complex soil slopes using limit analysis.” Journal of Geotechnical and Geoenvironmental Engineering. pp546-557.
13. Lambe, T. W., and Silva-Tulla, F., 1992. “Stability analysis of an earth slope.” Proceeding: Stability and Performance of Slopes and Embankments-II, ASCE Specialty Conference, University of California, Berkeley, California, June, pp.27-67.
14. Lorig, L., 1999. “Lesson learned from slope stability studies.” FLAC and Numerical Modeling in Geomechanics, Detoumay & Hart , pp.17-21.
15. Oda, M., 1885. “Permeability tensor for discontinuous rock masses.” Geotechnique, vol.35, No.4, pp.483-495.
16. Patton, F. D., and Hendron, A. J., 1974. “Mass movenments” General Report, Theme V. 2nd Int. Cong. of Eng. Geol, Sao Paulo, pp.1-57.
17. Priest, S. D., 1993. “Discontinuity analysis for rock engineering.” Chapman and Hall Publisher, London, pp.31-51.
18. Rulon, J. J., and Rodway, R., and Freeze, R. A., 1985. “The development of multiple seepage faces on layered slopes.” Water Resources Research, vol. 21, No.11, pp. 1625-1636.
19. Rulon, J. J., and Freeze, R. A., 1985. “Multiple seepage faces on layered slopes and their implications for slope-stability analysis.” Canadian Geotechnical Journal, vol. 22, pp. 347-356.
20. Sharp, J. C., Maini, Y. N., and Harper, T. R., 1972. “Influence of groundwater in the stability of rock masses.” Trans. Institution of Mining and Metallurgy, London. vol. 81, Bulletin No.782, pp. A13-20.
21. Singhal, B. B. S., and Gupta, R.P., 1999. “Applied Hydrogeology of Fractured Rocks” Kluwer Academic Publisher, The Netherlands, 151-168pp.
22. Terzaghi, K., 1925. Erdbaumechanik auf Bodenphysikalischer Grundlage, Dueticke, Vienna.
23. Terzaghi, K., 1936. “Relation between soil mechanics and foundation engineering: presidential address.” Proceedings, First International Conference on Soil Mechanics and Foundation Engineering, Boston, vol.3, pp.13-18.
24. Terzaghi, K., 1950. “Mechanism of landslides” In: Paige, S. (Ed.), Application of Geology to Engineering Practice (Berkey Volume), Geological Society of America, New York, pp. 83-123.
25. Terzaghi, K. and Peck, R.B., 1967. “Soil mechanics in engineering practice.” 2nd ed., Wiley, New York.
26. Toth, J., 1963.“A theoretical analysis of groundwater flow in small drainage basins. ” Journal of geophysical research, vol. 68, No.16, pp.4795-4812.
27. 吳偉特,1982。「邊坡穩定分析方法與應用」,兆林出版社,台北。
28. 李旺儒,2006。「比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究」,國立中央大學應用地質研究所碩士論文。
29. 李錦發、魏正岳、林明旻、黃健政,2004。「數值航測應用於山崩調查-以紅菜坪地滑為例」,經濟部中央地質調查所。
30. 柯虹如,2006。「紅菜坪地區崩積層特性與地滑行為初探」,國立台灣大學土木工程學研究所碩士論文。
31. 林炳森,1991。「崩積土坡力學性質及穩定性研究」,行政院國家科學委員會防災科技研究報告79-64號。
32. 陳筑佑,2005。「臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例」,國立中央大學應用地質研究所碩士論文。
33. 陳煌銘,1985。「排水與坡地穩定」,地工技術雜誌,第12期,第35-52頁。
34. 黃安斌、林慶偉、林銘郎、董家鈞,2005。紅菜坪地滑監測系統建立與變 形機制研究(1/2),經濟部中央地質調查所。
35. 黃安斌、林慶偉、林銘郎、董家鈞,2006。紅菜坪地滑監測系統建立與變形機制研究(2/2),經濟部中央地質調查所。
36. 黃鑑水、謝凱旋、陳勉銘,2000。「五萬分之ㄧ埔里圖幅暨說明書」,經濟部中央地質調查所。
37. 曾佳漢,2006。「應用質點影像測速技術分析集集地震於台灣中部所引發之非遽變山崩」,國立台灣大學地質科學研究所碩士論文。
38. 曾建豪,2004。「異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討」,國立中央大學應用地質研究所碩士論文。
39. 楊凱勝,2002。「FLAC與STABL程式於邊坡穩定分析之比較研究」,中原大學土木工程所碩士論文。
40. 潘政興,2007。「紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析」,國立中央大學應用地質研究所碩士論文。