跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許信忠
Hsin-Chung Hsu
論文名稱: 在氧化鋁上成長碳六十薄膜及在氧化鋁上成長金-白金合金團簇並曝上甲醇
Growth of C60 thin-film on Al2O3/NiAl(100) and Au-Pt bimetallic clusters on Al2O3/NiAl(100) exposed to methanol
指導教授: 羅夢凡
Meng-Fan Luo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 100
語文別: 英文
論文頁數: 85
中文關鍵詞: 碳六十金-白金合金團簇甲醇掃描穿隧顯微鏡
外文關鍵詞: methanol, Au-Pt bimetallic clusters, C60, STM
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在超高真空環境下使用掃描穿隧顯微鏡(STM)來研究在Al2O3/NiAl(100) 上成長C60薄膜。C60 鍍在晶格化的Al2O3 上,會形成長方形的島嶼;而在非晶格化的Al2O3 上,會呈現不規則的形狀,模式類似於其鍍在NiAl(100)上。長方形的C60 島嶼其長邊會沿著氧化條紋互相垂直的兩個方向(NiAl(100)的[001]和[010])。
    隨著碳六十的覆蓋量增加, C60 薄膜開始形成且會發現其成長模式為layer-by-layer 的模式。在C60 薄膜上會出現很多條紋,而其成因來自於C60 島嶼彼此的成長不匹配所造成的。接著加熱C60 薄膜,當加熱到400 K 時,薄膜仍然穩定但是表面變粗糙了;當溫度上升到500 K 或者更高時,薄膜變的不穩定且很多C60 脫附掉了。
    在Al2O3/NiAl(100)上鍍上不同鍍量的Au-Pt 雙金屬團簇,接著曝上1 L 的甲醇,發現其表面形貌在曝上甲醇前後都是一樣。然後加熱樣品到170 K,雙金屬團簇間的結合和分解都沒有觀察到。


    We present a scanning tunneling microscopy study of C60 films grown on
    Al2O3/NiAl(100) under ultrahigh vacuum conditions. The C60 islands formed on the
    crystalline Al2O3 have rectangular shapes whereas those on the amorphous area have
    irregular shapes, resembling those on NiAl(100). The long side of the C60 rectangular
    islands was along the direction of protrusions, which are along two directions ([001]
    and [010] of NiAl(100)) and perpendicular to each other.. Increasing the C60 coverage,
    layer-by-layer grown was found to dominate the growth. On the grown C60 films, the
    boundary defects caused by mismatch of C60 islands were identified. Annealing to 400 K, C60 film was still stable but became rougher; increasing the temperature to 500 K or higher, C60 film became unstable and a lot of C60 desorbed.
    The Au-Pt bimetallic clusters at varied coverages on Al2O3/NiAl(100) were exposed to methanol 1 L. The morphological change is not recognized. Annealing to the sample up to 170 K, coalescence and dissociation of the bimetallic clusters are not observed.

    Chapter 1 Introduction…………………………………………………………........1 Reference…………………………………………………………………………....3 Chapter 2 Literature Survey………………………………………………………...5 2.1 Properties of NiAl(100)………………………………………………………....5 2.2 The structure of θ-Al2O3 on NiAl(100)…………………………………………6 2.3 C60 on different substrates………………………………………………………9 2.3.1 Introduction of C60…………………………………………………………9 2.3.2 C60 on the metal…………………………………………………………...10 2.3.3 C60 on graphite………………………………………………………........16 2.3.4 C60 on TiO2(110)…………………………………………………………..18 2.4 Au-Pt bimetallic clusters………………………………………………………24 Reference…………………………………………………………………………..31 Chapter 3 Experiment Instruments………………………………………………..34 3.1 Vacuum system………………………………………………………………...34 3.1.1 Introduction of vacuum…………………………………………………...34 3.1.2 UHV system………………………………………………………………35 3.1.3 Experimental equipments…………………………………………………37 3.2 Scanning Tunneling Microscope………………………………………………40 3.2.1 Operation principles of STM……………………………………………...40 3.2.2 Operation of STM………………………………………………………...43 3.2.3 RHK-300 STM in experiment…………………………………………….46 v 3.2.4 Preparing the STM tip…………………………………………………….49 3.3 Experiment procedures………………………………………………………...50 3.3.1 Outline…………………………………………………………………….50 3.3.2 Details of experiments…………………………………………………….51 Reference…………………………………………………………………………..53 Chapter 4 Results and Discussions………………………………………………...55 4.1 C60 deposited on NiAl(100)……………………………………………………55 4.2 C60 deposited on Al2O3/NiAl(100)…………………………………………….59 4.2.1 C60 deposited on Al2O3 formed by O2 exposure 5 L……………………...59 4.2.2 C60 deposited on Al2O3 formed by O2 exposure 100 L…………………...62 4.3 Annealing effect on the C60 film……………………………………………….70 4.4 Au-Pt bimetallic clusters on Al2O3/NiAl(100) exposed to methanol 1L………76 Reference…………………………………………………………………………..84 Chapter 5 Conclusions...............................................................................................85

    [1] Joachim C, Gimzewski J K, Aviram A, Nature 408 (2000) 541.
    [2] Aviram A, Ratner M A, Chem. Phys. Lett. 29 (1974) 277.
    [3] Kroto H W, Heath J R, O‟Brien S C, Curl R F, Smalley R E, Nature 318 (1985)
    162.
    [4] Joachim C, Gimzewski J K, Chem. Phys. Lett. 265 (1997) 353.
    [5] Joachim C, Gimzewski J K, Tang H, Phys. Rev. B 28 (1998) 16407.
    [6] Miller B, Rosamilia J M, Dabbagh G, Tycko R, Haddon R C, Muller A J, Wilson
    W, Murphy D W, Hebard A F, Am. Chem. Soc. 113 (1991) 6291.
    [7] Sariciftci N S, Smilowitz L, Heeger A J, Wudl F, Science 258 (1992) 1474.
    [8] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J, Science 270 (1995) 1789.
    [9] Felix Loske, Ralf Bechstein, Jens Schütte, Frank Ostendorf, Michael Reichling,
    Angelika Kühnle, Nanotechnology 20 (2009) 065606.
    [10] M. S. Dresselhaus, G. Dresslhaus, P. C. Eklund, Science of Fullerenes and
    Carbon Nanotubes, Academic Press, New York, 1996.
    [11] M. R. C. Hunt, S. Modesti, P. Rudolf, R. E. Palmer, Phys. Rev. B 51 (1995)
    10039.
    [12] T. David, J. K. Gimzewski, D. Purdie, B. Reihl, R. R. Schlitter, Phys. Rev. B 50
    (1994) 5810.
    [13] J. H. Weaver, Acc. Chem. Res. 25(1992) 143.
    [14] D. J. Kenny, R. E. Palmer, Surf. Sci. 447 (2000) 126-132.
    [15] J. H. Sinfelt, Bimetallic Catalysts: DiscoVeries, Concepts and Applications;
    Wiley: New York, 1994.
    [16] C. Campbell, Annu. Rev. Phys. Chem. 41 (1990) 775.
    [17] J. A. Rodriguez, T. C. Campbell, D. W. Goodman, Surf. Sci. 377 (1994) 307-309.
    [18] J. A. Rodriguez, Surf. Sci. Rep. 24 (1996) 223.
    [19] J. Luo, P. N. Njoki, Y. Lin, D. Mott, L. Wang, C. –J. Zhong, Langmuir 22 (2006)
    2892.
    [20] J. Zeng, J. Yang, J. Y. Lee, W. J. Zhou, Phys. Chem. B 110 (2006) 24606.
    [21] E. Bus, J. A. v. Bokhoven, J. Phys. Chem. C 111 (2007) 9761.
    [22] H. B. Liu, U. Pal, J. A. Ascencio, J. Phys. Chem. C 112 (2008) 19173.
    [23] 何峻宇, 中央大學碩士論文.
    [24] D. A. King, D. P. Woodruff (Eds.), The Chemical Physics of Solid Surface,
    Growth and Properties of Ultrathin Epitaxial Layers, Vol. 8 (Elsevier,
    Amsterdam, 1997).
    [25] R. P. Blum, H. Niehus, Appl. Phys. A 66 (1998) S529-S533
    [26] R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 366 (1996) 107.
    [27] D. R. Mullins, S. H. Overbury, Surf. Sci. 199 (1988) 141.
    [28] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95.
    [29] N. Frémy, V. Mauruce, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
    [30] D. R. Mullins, S. H. Overbury, Surf. Sci. 199 (1988) 141.
    [31] R. M. Jaeger, K. Kuhlenbeck, H. J. Freund, M. Wuttig, W. Hoffmann, R. Franchy,H. Ibach, Surf. Sci. 259 (1991) 235.
    [32] M. Bäumer, H.J. Freund, Progress in Surf. Sci. 61 (1999) 127.
    [33] M. F. Luo, C. I. Chiang, H. W. Shiu, S. D. Sartale, C. Kuo, Nanotechnology 17
    (2006) 360.
    [34] V. Maurice, N. Frémy, P. Marcus, Surf. Sci. 581 (2005) 88.
    [35] Ching-Ling Hsu, Woei Wu Pai, Phys. Rev. B 68 (2003) 245414.
    [36] Sumio Iijima, Journal of Crystal Growth 50 (1980) 675-683.
    [37] D. Koruga, S. Hameroff, J. Withers, R. Loutfy, M. Sundareshan, FULLERENE
    C60 1993.
    [38] M. K. –J. Johansson, A. J. Maxwell, S. M. Gray, P. A. Brühwiler, L. S. O.
    Johansson, Surf. Sci. 397 (1998) 314-321.
    [39] J. Weckesser, J. V. Barth, K. Kern, Phys. Rev. B 64 (2001) 161403.
    [40] J. A. Gardener, G. A. D. Briggs, M. R. Castell, Phys. Rev. B 80 (2009) 235434.
    [41] Ching-Ling Hsu, Woei Wu Pai, Phys. Rev. B 68 (2003) 245414.

    QR CODE
    :::