| 研究生: |
陳煒 Wei Chen |
|---|---|
| 論文名稱: |
用奈米小球微影法製作多晶矽太陽能電池表面結構 Surface structures of polycrystalline silicon solar cell fabricated by nano-sphere lithography |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 有限時域差分法 、原子層沉積 、奈米小球微影法 |
| 外文關鍵詞: | nano-sphere lithography, atomic layer deposition, finite difference time domain method |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用奈米小球微影法在單面拋光多晶矽基板上以乾蝕刻的方式蝕刻出錐狀、柱狀及子彈狀結構。接著利用原子層沉積法在反射損耗較低的子彈狀結構表面鍍一層抗反射膜,以降低表面反射率。在量測分析上利用量測基板的反射率來討論不同形貌的結構對光學特性的影響。最後,我們將製程方法使用在非拋光多晶基板上以降低太陽能電池生產成本。
實驗結果發現不同高度的錐狀及柱狀結構,高度越高具有較低的反射率。相同高度不同頂角的子彈狀結構,頂角越小則具有較低的反射損耗。子彈狀結構相較於錐狀及柱狀具有較低的反射率,而ZnO抗反射膜可將波長300~1000nm平均反射率可降至0.69%。在光以大角度入射時也有極佳的抗反射效果。在光60度角入射時,波長400~850nm的平均反射率低於3%,其優化的光電流可達到36.55mA/cm2。將製程參數使用在非拋光基板上時,在波長300~1000nm的平均反射率為1.72%。在光60度角入射時,平均反射率達到3.39%,其優化的光電流可達到36.18 mA/cm2。
In this research, three types of nanostructures including cone, frustum, and bullet structures have been fabricated using nanosphere lithography on polycrystalline silicon substrates. Then, an antireflection coating (ARC) of ZnO film was deposited on the nanostructure using atomic layer deposition (ALD) process to reduce surface reflection. The reflectivity of the substrates with the different nanostructures was measured to investigate the relationship of the reflectivity with both depth and shapes. Finally, the nanosphere lithography technique was applied to the non-polished polycrystalline silicon substrate for the cost reduction of the solar-cell mass-production.
The results show, the average reflectance of the cone and frustum structures decreased as the height increasing. The average reflectance of the bullet structures decreased as the vertex angle decreasing. The reflectance of Bullet structures is lower than the reflectance of cone and frustum structures.
When the nanosphere lithography was applied to the polished polycrystalline silicon substrates, the average reflectance is 0.69% in the spectral range of 300~1000nm for the incident angle of 8o. The average reflectivity is less than 3.0% in the incident angle less than 60o in the spectral range of 400~850nm. At that moment the short-current is arrived 36.55mA/cm2.
When nanosphere lithography was applied to the non-polished polycrystalline silicon substrates, the average reflectance is 1.72% in the spectral range of 300 ~1000nm for incident angle of 8o. The average reflectivity is less than 3.39% in the incident angle less than 60o in the spectral range of 400 ~ 850nm. At that moment the short-current is arrived 36.18mA/cm2.
[1] 謝宏健,《以奈米小求提升矽薄膜太陽能電池吸收之研究》,國
立中央大學碩士論文(2008)。
[2] 吳財福,張健軒,陳裕愷,《太陽能供電與照明系統綜論》,全
華科技圖書股份有限公司( 2000)。
[3] Kyunghae Kim, S.K. Dhungel, et al., " Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication," Solar Energy Materials & Solar Cells 92,960– 968 (2008).
[4] L.A. Dobrzañski, A. Dryga, et al., " Development of the laser method of multicrystalline silicon surface texturization," Archives of Materials Science and Engineering 38, 5-11 (2009).
[5] Hitoshi Sai, Homare Fujii, et al., " Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks," Applied Physics Letters 88,1-3 (2006).
[6]王宗新,《金字塔抗反射結構之製作及其單晶矽太陽能電池之應
用》,國立中山大學碩士論文(2007)。
[7]蔡進譯,《超高效率太陽能電池-從愛因斯坦的光電效應談起》,
物理雙月刊 (廿七卷五期) 10月 (2005)。
[8] Available: http://en.wikipedia.org/wiki/Anti-reflective_coating
[9] E. Hecht, "Optics", Fourth edition, Addison Wesley, U.S.A. (2002).
[10]李正中,《薄膜光學與鍍膜技術》,藝軒出版社,台北,第六版,(2009)。
[11]K. M. Baker, "Highly corrected close-packed microlens arrays and
moth-eye structuring on curved surfaces,” Applied. Optics 38,352–356 (1999).
[12] Y. F. Huang ,S. Chattopadhyay, et al., "Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures" ,Nature Nanotechnology 2, 770 -774 (2007)
[13]K.S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media", IEEE Trans. Antennas Propagat 14, 302-307 (1966).
[14] 欒丕綱、陳啟昌 ,《光子晶體》,五南圖書出版社,台北,2005。
[15] 翟光耀,《光子晶體偏振分光鏡之設計與製作》,國立中央大
學碩士論文(2009)。
[16] 施怡婷,《奈米小球微影法在太陽能電池表面粗化上的研
究》,國立中央大學碩士論文(2010)。
[17]詹佳樺,《溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成
體之研究》,國立中央大學碩士論文 (2001)。
[18] 廖益廷,《溶膠凝膠法合成單一分散之氧化矽奈米微球》,逢甲大學專題研究(2006)。
[19] 梁致遠,《次微米灰階氮化矽結構對發光二極體光型修整機制之研究》,國立中央大學碩士論文(2007)。
[20] 張勁燕,《半導體製程設備》,五南出版社,台北,第四版,2000。
[21] Wen-Hao Cho and etc “Large Area Thickness Uniformity Analysis of ZnO ALD Films,”中國材料科學學會年會,11月21-22(2008),台北國立台北科技大學。
[22] 黃柏諭,《以奈米壓印改善陽極氧化鋁週期性》,國立中央大學碩士論文(2007)。