跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王智明
She-Ming Wang
論文名稱: 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
指導教授: 張正陽
Jenq-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 88
語文別: 中文
論文頁數: 125
中文關鍵詞: 光折變雙波混和光致吸收光譜鈦酸鋇黑暗衰減溫度波長
外文關鍵詞: dark decay, barium titanate, light-induced absorption, two-beam coupling, photorefractive, temperature, wavelength
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 1. 實驗波長的不同會使得晶體的主要載子有所改變。
    2. 氣氛處理10-5atm以及10-10atm這兩顆晶體處於電子電洞競爭的狀態。10-5atm這顆晶體的電子電洞競爭的平衡點應將出現在波長514nm與532nm之間,而10-10atm這顆晶體的電子電洞競爭的平衡點應將出現在波長532nm與633nm之間。
    3. 藉由分析材料的深淺能階所佔的比重,我們可以預測有效陷阱濃度與溫度的關係:淺能階效應大者,有效陷阱濃度隨溫度增高而減少;淺能階效應小者,有效陷阱濃度隨溫度增高而變大。
    4. 溫度升高,黑暗導電率變大,導電率在高溫時會受黑暗導電率的主宰,而532nm及633nm的導電率主宰機制大致相同。


    目錄 摘要………………………………………...…………………1 目錄………………………………………...…………………2 圖表索引…………………………………...…………………5 第一章 前言………………………………………….………8 第二章 光折變理論………………………….……………12 2.1 引言…………………………….…………..……………12 2.2 單載子單能階模型………………………………….……15 2.3 單載子雙能階模型……………………………………….21 2.3.1空間電場與入射光強度的關係………………………22 2.3.2光導電與入射光強度的關係…………………………24 2.3.3光柵吸收率……………………………………………26 2.3.4黑暗衰減………………………………………………27 2.4 three-charge state model…………………………………...28 2.4.1空間電場………………………………………………31 2.4.2光柵吸收率……………………………………………33 第三章 實驗………………………………………………….37 3.1前言………………………………………………………...37 3.2光學性質…………………………………………………...38 3.2.1穿透式吸收光譜………………………………………38 3.2.2吸收光譜實驗架構……………………………………39 3.2.3吸收光譜實驗結果……………………………………40 3.2.4光致吸收光譜……………………………...………….41 3.3光折變性質……………………………………...…………43 3.3.1雙波混合能量增益係數………………………………43 3.3.2黑暗衰減實驗…………………………………………44 第四章 光學及光折變性質與波長的關係………………….51 4.1引言………………………………………………………...51 4.2光學性質…………………………………………………...52 4.2.1光致吸收光譜…………………………………………52 4.3光折變性質………………………………………………...54 4.3.1雙波混合能量增益……………………………………54 4.4討論………………………………………...………………59 4.4.1光致收光譜……………………………...…………….59 4.4.2雙波混合能量增益……………………………………64 4.4.3有效陷阱濃度…………………………………………66 4.5數值模擬……………………………………………...……69 第五章 光學及光折變性質與溫度的關係……………….…79 5.1光致吸收光譜…………………...…………………………80 5.2 雙波混合能量增益係數……….…………………………82 5.2.1當波長為532nm時:………..…………………………82 5.2.2當波長為633nm時:…………..………………………86 5.3黑暗衰減……………………………..…………………….89 5.3.1當波長為532nm時……………………………………89 5.3.2當波長為633nm時……………………………………91 5.4討論……………………………………...…………………92 5.4.1光致吸收光譜…………………………..……………..92 5.4.2有效陷阱濃度……………………………..…………..97 5.4.3黑暗衰減實驗……………………………..………..103 第六章 結論……………………………………………...…122 6.1光學及光折變性質與波長的關係…………………...…122 6.2光學及光折變性質與溫度的關係…………………...…123

    [1] Ashkin, G. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Kallman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneties in LiNbO3” Appl. Phys. Lett., vol. 9, p. 72, 1966.
    [2] N. V. Kukhtarev, V. B. Markov, S. G. Odoulove, M. S. Soshkin, and V. Vinetskii, “Holographic storage in electrooptic crystals I. Steady state” Ferroelectrics, vol. 22, p. 949, 1979.
    [3] J. Feinberg, D. Heiman, A. R. Tangrary, Jr. and R. Hellwarth, “Photorefractive effects and light-induced charge migrating in barium titanate” J. Appl. Phys., vol. 51, p. 1297, 1980.
    [4] M. B. Klein and G. C. Valley, “Beam coupling in BaTiO--3 at 422nm” J. Appl. Phys., vol. 57, p. 4901, 1985.
    [5] F. P. Strohkendl, J. M. C. Jonathan and R. W. Hellwarth, “Hole-electron competition in photorefractive grating” Opt. Lett., vol. 11, p. 312, 1986.
    [6] G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials” J. Appl. Phys., vol. 57, p. 3363, 1986.
    [7] P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive materials” J. Appl. Phys., vol. 5, p. 4082, 1991.
    [8] P. Tayebati, “Effect of shallow traps on electron-hole competition in semi-insulating photorefractive materials” J. Opt. Soc. Am. B, vol. 3, p. 415, 1992.
    [9] K. Buse, E. Kratzig: Appl. Phys. B, vol. 61, p. 27, 1995.
    [10] H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium” Appl. Phys. B, vol. 61, p. 1, 1995.
    [11] K. Buse, ”Light-induced charge transport processes in phtorefractive crystals I: Models and experimental methods” Appl. Phys. B, vol. 64, p. 273, 1997.
    [12] G. W. Ross, P. Hribek, R. W. Eason, M. H. Garret, D. Rytz, “Impurity enhanced self-pumped conjugation in the near infrared in blue BaTiO3” Opt. Commun., vol. 101, p. 60, 1993.
    [13] A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive propeties of infrared-sensitive rhodium-doped barium titanate” Opt. Lett., vol. 19, p. 536, 1994.
    [14] D. Rytz, M. B. Klein, R. A. Mullen, R. N. Schwartz, G. C. Valley, B. A. Wechsler, “High-sensitivity fast response in photorefractive BaTiO3 at 120℃” Appl. Phys. lett., vol. 52, p. 1759, 1988.
    [15] S. Ducharme, J. Feinberg, J. Appl. Phys., vol. 56, p. 839, 1984.
    [16] Jiasen Zhang, S. X. Dou, Hong Gao, Yong Zhu, and Peixian Ye, “Wavelength dependence of two-beam coupling gain coefficients of BaTiO3:Ce crystals” Appl. Phys. Lett., Vol. 67, p. 458, 1995.
    [17] J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, and C. C. Sun, “Wavelength dependence of carrier-type in reduced BaTiO3:Rh” Appl. Phys. lett., vol. 72, p. 2199, 1998.
    [18] L. Corner, R. Ramos-Garcia, A. Petris, M. J. Damzen, “Experimental and theoretical characterisaton of rhodium-doped barium titanate” Opt. Commun., vol. 143, p. 165, 1997.
    [19] P. Bernasconi, M. Zgonik, and P. Gunter,” Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals” J. Appl. Phys., vol. 78, p. 2651, 1995.
    [20] U. van Stevendaal, K. Buse, S. Kamper, H. Hesse, E. Kratzig,”Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron” Appl. Phys. B., vol. 63, p. 315, 1996.

    QR CODE
    :::