| 研究生: |
陳昀靖 Yun-jing Chen |
|---|---|
| 論文名稱: |
西北太平洋地區颱風活動隨全球暖化的改變 Change of tropical cyclone activity in Western North Pacific under the global warming |
| 指導教授: |
林沛練
Pay-liam Lin 曾仁佑 Ren-yow Tzeng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 颱風 、全球暖化 |
| 外文關鍵詞: | Typhoon, global warming |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用了高解析度大氣模式HiRAM以及三個CMIP5的模式CNRM-CM5、MIROC5以及GFDL-ESM2G對於西北太平洋地區颱風活動在全球暖化下會如何改變進行分析。在此針對颱風總個數、生命週期、颱風生成及路徑分布以及降雨強度的改變進行討論。
從模擬結果可發現,當溫室氣體濃度上升時,各個模式模擬出的西北太平洋地區的大尺度環境場皆會有以下的改變: (1)海溫上升、(2)近赤道太平洋地區東西向海溫梯度減弱、(3)沃克環流減弱、(4)西北太平洋副高西伸、(5)季風槽減弱、(6)穩定度增加以及(7)低對流層比濕增加等情況。
因此,分析其結果發現各個模式在西北太平洋颱風個數在全球暖化下會因為季風槽減弱以及穩定度增加而減少。而低層比濕以及海表面溫度的增加提供更多的水氣使得颱風的平均降雨強度增加。此外受到副高西伸的影響,造成颱風路徑在全球暖化下會有向西或者向南偏的趨勢。而各模式模擬出颱風的生命週期在全球暖化下皆無明顯的改變。
在颱風強度方面,HiRAM、CNRM-CM5以及GFDL-ESM2G都模擬出西北太平洋熱帶地區潛勢強度隨全球暖化上升,造成颱風平均最大風速上升且較強的颱風期比例或個數有上升的情形。但MIROC5則顯示出西北太平洋熱帶地區潛勢強度隨全球暖化減弱造成颱風的平均最大風速下降,且強颱個數減少。
HiRAM、CNRM-CM5以及GFDL-ESM2G都模擬出垂直風切在全球暖化之情況下在西北太平洋熱帶氣區有減弱的趨勢。但MIROC5則模擬出風切增強的結果。而在暖水層厚度方面,CNRM-CM5以及GFDL-ESM2G都模擬出在模式中的颱風主要生成區暖水層厚度都有明顯加深,有利於強颱生成。但MIROC5則在該模式之颱風主要生成區內暖水層厚度沒有明顯的增加。
雖然在颱風強度、垂直風切以及暖水層厚度的改變方面各模式所模擬出的結果不盡相同,但大多數模式認為颱風強度會增強且垂直風切以及暖水層厚度的改變是有利於颱風發展的,因此在未來較有可能出現上述的改變。
Tropical cyclone (TC) activity in Northwest Pacific Ocean is analyzed in 3 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) CNRM-CM5, MIROC5 and GFDL-ESM2G and high-resolution atmospheric model(HiRAM) . We discuss the total number, lifetime, intensity, track variation of tropical cyclones under different climate scenarios in the Northwest Pacific Ocean.
All of models show that there are several changes of large-scale environment occurred with global warming in the West North Pacific. (1) Sea surface temperatures increase. (2) sea surface temperature gradient of equatorial Pacific decrease (3)Walker circulation weakens. (4) West North Subtropical high extend westward. (5) monsoon through weakens. (6)Stability increase and (7) Specific humidity in low troposphere increase.
Therefore , all of models show that the number of TC decrease. This reduction is associated with increment of stability and weakness of monsoon through. The increment of specific humidity in low troposphere cause the rainfall brought by TCs become stronger .And the track of TCs tend to westward instead of northward because of the westwardly extension of West North Subtropical high.
Tropical cyclone strength , HiRAM, CNRM-CM5 and GFDL-ESM2G are simulate that potential intensity will increase in tropical Northwest Pacific under the global warming, so average maximum wind speed of TCs increase and the number or ratio of stronger TCs increase. But MIROC5 shows that average maximum wind speed decrease and reduce the number of stronger TCs because of the decrement of potential intensity.
李智傑,2013:西北太平洋颱風動力降尺度模擬及其氣候變遷推估。國立台灣師範大學地球科學系碩士論文。
洪浩哲,2013:西北太平洋副熱帶高壓西伸東退對西北太洋熱帶氣旋氣候特性的
影響。國立中央大學大氣物理研究所碩士論文。
楊承道,2008:氣候變遷對西北太平洋熱帶氣旋的影響。國立中央大學大氣物理
研究所碩士論文。
Bengtsson L., K. I. Hodges, M. Esch, N. Keenlyside, L. Kornblueh, J. J. Luo, and T. Yamagata., 2007 : How may tropical cyclones change in a warmer climate? Tellus, V59A, 539-561.
Bengtsson L., M. Botzet, and M. Esch, : Will greenhouse gas induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57–73.
Bister, M. and Emanuel, K. A. 1998. Dissipative heating and hurricane
intensity. Meteor. Atm. Phys. 52, 233–240.
——, 2002a. Low frequency variability of tropical cyclone potential intensity, 1, interannual to interdecadal variability. J. Geophys. Res. 107, 4801, doi:10.1029/2001JD000776.
Camargo S., 2013 : Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880–9902
Chao He and Tianjun Zhou, 2015: Responses of the Western North Pacific Subtropical High to Global Warming under RCP4.5 and RCP8.5 Scenarios Projected by 33 CMIP5 Models: The Dominance of Tropical Indian Ocean–Tropical Western Pacific SST Gradient. J. Climate, 28, 365–380.
D. P. Dee et al. (2011) The ERA-Interim reanalysis: configuration and
performance of the data assimilation system. Q. J. R. Meteorol.
Soc. 137, 553
Dunne, J. P., et al., 2012: GFDL’s ESM2 global coupled climate-carbon Earth System Models Part I: Physical formulation and baseline simulation characteristics. J. Climate., 25, 6646–6665.
Emanuel, , 1988 : The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.
——, 2005 : Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688.
Emanuel, K. A. and Nolan, D. S. 2004. Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241
Gill, A. E., 1980: Some simple solutions for heat induced tropical
circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.
Gray,W. M. 1979. Hurricanes: their formation, structure and likely role
in the tropical circulation. In: Meteorology over the Tropical Oceans.pp. 155–218.
Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1992 : Tropical Disturbances in a GCM, Clim. Dyn., 8, 247–257.
Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573– 2586.
I-I Lin, C. H. Chen, I. F. Pun, W. T. Liu, and C. C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi:10.1029/2008GL035815.
I-I Lin, Chun-Chieh Wu, Kerry Emanuel, I-Huan Lee, Chau-Ron Wu, and Iam-Fei Pun, The interaction of Supertyphoon Maemi ,2003 : with a warm ocean eddy, Monthly Weather Review, p. 2635-2649, doi: 10.1175/MWR3005.
I-I Lin, W. Timothy Liu, Chuin-Chieh Wu, John C. H. Chiang, and Chun-Hsin Sui, 2003 : Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophysical Research Letters, Vol. 30, No. 3, 1131, doi: 10.1029/2002GL015674
IPCC ,2000: A Special Report of emissions scenarios. The Science of Climate Change Contribution of Working Group Ⅲ of the Intergovernmental Panel on Climate Change [Nebojsa N., D. Ogunlade, D. Gerald, G. Arnulf, K. Tom, L. L. R. Emilio, M. Bert, M. Tsuneyuki, P. William, P. Hugh, S. Alexei, S. Priyadarshi, S. Robert, W. Robert, D. Zhou (eds.)]. Cambridge University Press .
Lu, X., H. Yu, and X. Lei, 2011: Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteor. Sinica,25,104-112.
Meehl, G. A., W. D. Collins, B. A. Boville, J. T. Kiehl, T. M. L. Wigley, and J. M. Arblaster, 2000: Response of the NCAR Climate SystemModel to increased CO2 and the role of physical processes. J. Climate, 13, 1879–1898.
Murakami H, Sugi M ,2010: Effect of model resolution on tropical
cyclone climate projections. SOLA 6:73–76
Rathmann, N. M., S. Yang, and E. Kass, 2013: Tropical cyclones in enhanced resolution CMIP5 experiments. Climate Dyn., 42, 665–681, doi:10.1007/s00382-013-1818-5
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407, doi:10.1029/2002JD002670 (2003).
Roeckner E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Duemenil, M. Esch, M. Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report of the Max-Planck-Institute, Hamburg, 218, 90.
Stowasser, M., Y. Wang, and K. Hamilton, 2007 : Tropical cyclone change in the Western North Pacific in a Global warming scenario. J. Climate, 20, 2378-2396.
Sugi, M. , and N. Sato, 2002 : Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteorol. Soc. Jpn., 80, 249–272.
Vecchi, G. A., and Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76.
Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Matsui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK ,2011a : Representative concentration pathways: An overview. Climatic Change. doi:10.1007/s10584-011-0148-z
Voldoire, A., et al. ,2012 : The CNRM-CM5.1 global climate model: Description and basic evaluation, Clim. Dyn., doi:10.1007/s00382-011- 1259-y.
Wu B, Zhou T, Li T ,2009 : Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate. 22:2992–3005.
Wang B, Yim SY, Lee JY, Liu J, Ha KJ, 2014: Future change of Asian-Australian monsoon under RCP4.5 anthropogenic warming scenario. Clim Dyn 42:83–100. doi:10.1007/s00382-012- 1564-0
Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Climate 23:6312– 6335. doi:10.1175/2010JCLI3679.1
Zhao, M., Held, I., Lin, S.-J. & Vecchi, G. A. (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J. Climate. 22, 6653–6678.
Zhou T.J, Yu R.C., Zhang J, Drange H, Cassou C, Deser C, Hodson DLR, Sanchez-Gomez E, Li J, Keenlyside N, Xin X-G, Okumura Y ,2009 : Why the Western Pacific subtropical high has extended westward since the late 1970s. J. Climate. 22, 2199–2215