| 研究生: |
莊鎰瑋 Yi-Wei Juang |
|---|---|
| 論文名稱: |
質子交換膜燃料電池發泡材流道與傳統流道之模擬分析 Numerical Study on Metal Foam Flow Field and Channel Flow Field in PEMFC |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 發泡材 、微觀孔洞分析 、質子交換膜燃料電池 、流道設計 、數值分析 、C FD |
| 外文關鍵詞: | Metal foam, Flow field design, CFD, Numerical analysis, PEMFC, Pore scale modeling |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是建立出不同孔隙率的實體發泡材流道與不同肋
條比例的平行流道,綜合探討氣體傳輸與電流傳遞對質子交換
膜燃料電池性能的影響,且觀察電池內部的氣體分布、流場變
化及電流傳輸的細部現象。建立三維局部燃料電池模型及格點
是使用D E S IGN MOD E LE R 與M E S HING 軟體, 且使用計算流
體力學軟體FLU E N T 的燃料電池模組進行分析。
研究結果顯示,發泡材流道較平行流道有較佳的氣體利用
率,若將發泡材壓縮使其孔隙率縮小,會幫助流體加速往氣體
擴散層移動,使得性能再往上提升。發泡材流道因肋條較均勻
分布於流道中,將電流向外往集電板傳出的效果也較平行流道
突出,為了看出導電的差異,本研究計算出流道的有效導電率
進行量化比較。最後綜合了流道中,氣體利用率與電流傳遞的
兩大因素,找出發泡材流道的最佳孔隙率與平行流道的最佳肋
條比例,且經由參數分析討論肋條材料的電傳導係數與當量比
對燃料電池最佳肋條比例與孔隙率的影響,結果顯示,若流道
材料為金屬時,對肋條的最佳比例影響不大,而當量比對最佳
比例則有較明顯的影響。
This study investigates the effects of solid volume fraction of the flow field
on the gas transport, electron transfer and fuel cell performance through micro
scale modeling. Three dimensional model and grid system are built by using
Design Modeler and Meshing, while solutions to the governing equations are
obtained by employing commercial CFD software package ANSYS-Fluent.
The results show that using highly porous metal foam to replace traditional
channel flow field results in better gas utilization rate (GUR). Reducing the
permeability of metal foam increases gas flux to the gas diffusion layer, and
thus enhances cell performance. This study also compares the effective
electrical conductivity (EEC) of the flow field. Metal foam flow field has higher
EEC because electric current can be collected more uniformly distributed
throughout the whole electrode. By simultaneously considering EEC and GUR,
one can find the optimal porosity for metal foam or the optimal rib-to-channel
ratio for the channel flow field. Results show that stoichiometry affects these
optimal values. When the solid material used is metal, the electric conductivity
of the material does not affect these optimal values.
[1] J. Larminie and A. Dicks, Fuel cell systems Explained (2nd Edition), John Wiley &
Sons, 2003.
[2] P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and
technology from the 1960s to the year 2000:Part I. Fundamental scientific aspects,”
Journal of Power Sources, Vol. 102, pp. 242-252, 2001.
[3] P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and
technology from the 1960s to the year 2000:Part II. Engineering technology
development and application aspects,” Journal of Power Sources, Vol. 102, pp.
253-269, 2001.
[4] W.M. Yan, C.Y. Soong, F. Chen and H.S. Chu, “Effects of flow distributor geometry
and diffusion layer porosity on reactant gas transport and performance of proton
exchange membrane fuel cells,” Journal of Power Sources, Vol. 125, pp. 27-39, 2004.
[5] Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Yang and C. S. Kim, “Effects of channelconfigurations of flow field plates on the performance of a PEMCE, ” Journal of
Electrochimica Acta, Vol. 50, pp. 709-712, 2004.
[6] S.M. Senn and D. Poulikakos, “Polymer electrolyte fuel cells with porous materials as
fluid distributors and comparisons with traditional channeled systems ,” Transactions
of ASME , Vol. 126, pp. 410-418, 2004.
[7] S. A. Grigiriev, A. A. Kalinnikov, V. N. Fateev and A. A. Wragg “Numerical
optimization of bipolar plates and gas diffusion layers for PEM fuel cells, ” Journal of
Applied Electrochemistry, Vol. 36, pp. 991-996, 2006.
9 1
[8] S. Lee, H. Jeong, B. Ahn, T. Lim, Y. Son, “Parametric study of the channel design at
the bipolar plate in PEMFC performances, ” International Journal of Hydrogen Energy,
Vol. 33, pp. 5691-5696, 2008.
[9] M. Rahimi, B. Aghel , A.A. Alsairafi , “Experimental and CFD studies on using coilwire insert in a proton exchange membrane fuel cell, ” Chemical Engineering and
Processing, Vol. 49, pp. 689-696, 2010.
[10] H. W. Wu and H. W. Ku, “The optimal parameters estimation for rectangular cylinders
installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC
model and the Taguchi method,” Applied Energy, Vol. 88, pp. 4879-4890, 2011.
[11] K. Scott, P. Argyropoulos, P. Yiannopoulos and W. M. Taama, “Electrochemical and
gas evolution characteristics of direct methanol fuel cells with stainless steel mesh
flow beds,” Journal of Applied Electrochemical Society, Vol. 31, pp. 823-832, 2001.
[12] A. Kumar and R.G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with
metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol.
114, pp. 54-62, 2003.
[13] S. Arisetty, A. K. Prasad and S. G. Advani, “Metal foams as flow field and gas
diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol. 165, pp.
49-57, 2007.
[14] 蔡秉蒼,曾重仁,「金屬發泡材質子交換膜燃料電池之性能分析」,第三屆全國氫
能與燃料電池學術研討會,FC043,國立台南大學,2008。
[15] 陳孟怡,「金屬發泡材質子交換膜燃料電之研究」,碩士論文,國立中央大學機械
工程學系,2009。[16] J. Chen, “Experimental study on the two phase flow next term behavior in PEM fuel
cell parallel channels with porous media inserts,” Journal of Power Sources, Vol. 195,
pp. 1122-1129, 2010.
[17] J. Kim and N. Cunninghham, “Development of porous carbon foam polymer
electrolyte membrane fuel cell,” Journal of Power Sources, Vol. 195, pp. 2291-2300,
2010.
[18] K. Boomsma, D. Poulikakos , Y. Ventikos, “Simulations of flow through open cell
foams using an idealized periodic cell structure, ” International Journal of Heat and
Fluid Flow, Vol. 24 , pp. 825-834,2003.
[19] S. Krishnan, J.Y. Murthy, S.V. Garmella, “Direct simulation of transport in open-cell
metal foam, ” Journal of Heat Transfer, Vol. 128, pp. 793-799,2006.
[20] A. Kopanidis, A.Theodorakakos, E.Gavaises and D.Bouris, “Pore scale 3D modeling
of heat and mass transfer in the gas diffusion layer and cathode channel of a PEM fuel
cell, ” International Journal of Thermal Sciences, Vol. 50, pp. 456-467,2011.
[21] A. Kopanidis, A.Theodorakakos, E.Gavaises and D.Bouris, “3D numerical simulation
of flow and conjugate heat transfer through a pore scale model of high porosity open
cell metal foam, ” International Journal of Heat and Mass Transfer, Vol. 53, pp.
2539-2550,2010.
[22] K. K. Bodla, J. Y.Murthy and S. V.Garimella, “Microtomography-based simulation of
transport through open-cell metal foams ,” Numerical Heat Transfer, Part A, Vol. 58,
pp. 527- 544, 2010.
[23] S. Mazumder and J. V. Cole, “Rigorous 3-D Mathematical modeling of PEM fuel cells,”
Journal of Electrochemical Society, Vol. 147, pp. 1510- 1517, 2003.[24] C. Y. Wang S Um, and K. S. Chen, “ Computational fluid dynamics modeling of
proton exchange membrane fuel cells,” Journal of Electrochemical Society, Vol. 147,
pp. 4485-4493, 2000.
[25] T. A. Zawodzinski, T. E. Springer and S. Gottesfeld, “Polymer electrolyte fuel cell
model,” Journal of Electrochemical Society, Vol. 138, pp. 2334- 2342, 1991.
[26] J. Divisek, A. A. Kulikovsky and A. A. Kornyshev, “Modeling the cathode
compartment of polymer electrolyte fuel cells-dead and active reaction zones,” Journal
of Electrochemical Society, Vol. 146, pp. 3981-3991, 1999.
[27] J. V. Cole and S. Mazumder, “Rigorous 3-D mathematical modeling of PEM fuel cells,”
Journal of Electrochemical Society, Vol. 150, pp. A1503- A1509, 2003.
[28] F. Moukalled and M. Darwish, “A comparative assessment of the performance of mass
conservation-based algorithms for incompressible multiphase flows,” Numerical Heat
Transfer Part B, Vol 42, pp. 259-283, 2002.
[29] S. V. Patankar, “Numerical heat transfer and fluid flows,” Hemisphere, Washington,
1980.
[30] W. Yuan, Y. Tang, M. Pan, Z. Li and B. Tang, “Model prediction of effects of operating
parameters on proton exchange membrane fuel cell performance,” Renewable Energy,
Vol. 35, pp. 656-666,2010.