| 研究生: |
譚志豪 Chih-Hao Tan |
|---|---|
| 論文名稱: |
黏土壓縮與壓密行為之研究 The Behavior of Compression and Consolidation for Clays |
| 指導教授: |
黃俊鴻
Jin-Hung Hwang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 428 |
| 中文關鍵詞: | 壓縮 、壓密 、尺寸效應 、時間尺度 、超載預壓 |
| 外文關鍵詞: | compression, consolidation, size effect, time scale, surcharge |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究針對黏土壓縮與壓密行為進行廣泛之研究,根據研究成果具體提出:(1)試驗方法對粘性土壤壓縮與壓密參數之影響、(2)尺寸效應對黏土壓縮與壓密行為之影響、(3)時間座標尺度對解釋次壓縮行為之影響、以及(4)超載預壓對黏土長期沉陷之影響等前人較少提及之研究結果。本研究亦規劃執行不同尺寸試體之壓密試驗,探究尺寸效應對黏土壓縮及壓密行為之影響,藉以驗證小尺寸試體之壓縮與壓密參數是否可反應現地土層之壓密沉陷行為。
此外,為掌握沉陷分析時施工作業對土層壓密行為之影響,本研究發展一套能考慮垂直向與徑向壓密、非線性土壤參數、軟弱土層大變形、荷載隨時間變化、不規則形狀荷載、樁-土複合地盤沉陷行為、點井抽水與解水、以及井阻抗與塗抹效應等現地施工狀況之多功能壓密沉陷數值程式,並透過實際之沉陷案例分析累積參數之選取經驗,而不同種類土壤壓縮與壓密參數之率定資料可供各界處理類似沉陷問題時之參考。
ABSTRACT
Based on the results of this study we achieved several important conclusions such as the discrepancies of the compression and consolidation parameters under the different test conditions from the conventional consolidation test, the effect of size of specimens on the compression and consolidation parameters of clays, the effect of time scale on the interpretation of secondary compression for clays, and the effect of the amount and the duration of surcharge on the long-term settlement of clays.
This study also carried out the consolidation tests for specimens of different size to investigate the size effect of compression and consolidation parameters. The results of the tests are not only to verify whether the compression and consolidation parameters of 2 cm specimen can be applied to predict the consolidation settlement of a thick soil layer in the field, but also to feedback the numerical model.
Furthermore, the construction factors, such as nonlinear parameters, large strain, time-varying load, loading and unloading of arbitrary foundation shape, the settlement of the composite ground reinforced by piles, dewatering and recharging of ground water, and the smear effect and the well resistance of prefabricated vertical drains, are simulated to improve the abilities of the numerical program. The verification of the numerical model with other closed-form solutions or numerical results was performed. Furthermore, the statistical correlations of the compression and consolidation parameters with their physical indexes for many alluvial clays and the experiences of settlement analysis obtained from several engineering projects were also proposed.
參考文獻
1. Aboshi, H., “An experimental investigation on the similitude in the one-dimensional consolidation of a soft clay including the secondary creep settlement”, Proc. 8th ICSMFE, Vol. 4, pp. 81-83 (1973).
2. Akai, K., Kamon, M., Sano, I. and Soga, K., “Long-term consolidation characteristic of diluvial clay in Osaka Bay”, Soils and Foundations, Vol. 31, No. 4, pp. 61-74 (1991).
3. Balasubramaniam, A. S., Gurung, S. B., Kusakabe, O. and Kim, S. R., “On the plastic volumetric strain of Bangkok clay”, Proc. of the 11th Southeast Asian Geotechnical Conference, pp. 73-78, Singapore (1993).
4. Barden, L., “Consolidation of clay with non-linear viscosity”, Geotechnique, Vol. 15, pp. 345-362 (1965).
5. Barron, R. A., “Consolidation of fine-grained soils by drain wells”, Transactions, ASCE, Vol. 113, pp. 718-754 (1948).
6. Bergado, D. T., Asakami, H., Alfaro, M. C. and Balasubramaniam, A. S., “Smear effects of vertical drains on soft Bangkok clay”, Journal of Geotechnical Engineering, Vol. 117, No. 10, pp. 1509-1530 (1991).
7. Berry, P. L., “Application of consolidation theory for peat to the design of a reclamation schedule by preloading”, Quarterly J. Eng. Geology, Vol. 16, pp. 103-112 (1983).
8. Buisman, A. S. K., “Results of long duration settlement tests”, Proc. 1st Int. Conf. Soil Mech. Found. Eng., Cambridge, pp. 100-106 (1936).
9. Casagrande, A., “The determination of the preconsolidation load and its practical significance”, Proc. 1st Int. Conf. Soil Mech. Found. Eng., Cambridge, Vol. 3, pp. 60-64 (1936) .
10. Crawford, C. B. and Sutherland, J. G., “The Empress Hotel, Victoria, British Columbia. sixty-five years of foundation settlement”, Canadian Geotechnical Journal, Vol. 8, pp. 77-93 (1971).
11. Davis, E. H., and Poulos, H. G., “The use of elastic theory for settlement prediction under three-dimensional conditions”, Geotechnique, Vol. 18, pp. 67-91 (1968).
12. Duncan, J. M., “Limitations of Conventional Analysis of Consolidation Settlement”, Journal of Geotechnical Engineering, ASCE, Vol. 119, No. 9, pp. 1333-1359 (1993).
13. Olson, R. E., “Settlement of embankments on soft clay”, Journal of Geotechnical and Geoenvironmental engineering, ASCE, Vol. 124, No. 8, pp.659-669 (1998).
14. Dhowian, A. W. and Edil, T. B., “Consolidation behavior of peats”, Geotech. Testing J., Vol. 3, No. 3, pp. 105-114 (1980).
15. Feda, J., Creep of Soils and Related Phenomena, Elsevier, New York, pp. 276-292 (1992).
16. Fox, P. J., “C?/Cc concept applied to compression of peat”, J. Geotech. Eng., ASCE, Vol. 118, No. 8, pp. 1256-1263 (1992).
17. Fox, P. J., and Edil, T. B., “Effects of stress and temperature on secondary compression of peat”, Can. Geotech. J., Vol. 33, pp. 405-415 (1996).
18. Frydman, S., Komornik, U. and Komornik, A., “Geotechnical properties of Israeli coastal clays”, Proc. of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, pp. 137-142, Bangkok, Thailand (1991).
19. Gutub, M. Z. A. and Khan, A. M., “Drainage and compressibility characteristics of Madinah clay with sand drains”, Proc. of the 11th southeast Asian Geotechnical Conference, pp. 349-355, Singapore (1993).
20. Hansbo, S., “Consolidation of clay, with special reference to influence of vertical sand drains”, Thesis, Swedish Geotech. Inst. Proc. No. 18 (1960).
21. Hansbo, S., “Influence of mobile particles in soft clay on permeability”, Proc. Int. Symp. Soil Structure, Gothenburg, pp. 132-135 (1973).
22. Hansbo, S., “Consolidation of clay by band-shaped prefabricated drains”, Ground Engineering, Vol. 12, No. 5, pp. 16-25,(1979).
23. Hansbo, S., “Consolidation of fine-grained soils by prefabricated drains”, Proc. 10th Int. Conf. Soil Mech., Stockholm, Vol. 3, Paper 12/22, pp. 677-682 (1981).
24. Hobbs, N. B., “Mire morphology and the properties and behavior of some british and foreign peats”, Quarterly J. Eng. Geology, Vol. 19, No. 1, pp. 7-80 (1986).
25. Holtz, R. D. and Kovacs, W. D., An Introduction to Geotechnical Engineering, Prentice-Hall, New Jersey (1981).
26. Hossain, D., “Discussion: Limitations of conventional analysis of consolidation settlement”, Journal of Geotechnical Engineering, Vol. 121, pp. 514-515 (1995).
27. Katagiri, G., “The relationship between Cc and C? of clay”, Proc. of the 11th Southeast Asian Geotechnical Conference, pp. 121-124, Singapore (1993).
28. Lo, K. Y., “Secondary compression of clays”, J. Soil Mech. Found. Div., ASCE, Vol. 87, SM4, pp. 61-87 (1961).
29. Mesri, G., “Coefficient of secondary compression”, Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM1, pp. 123-137 (1973).
30. Mesri, G., and Rokhsar, A., “Theory of consolidation for clays”, Journal of Geotechnical Engineering Division, ASCE, Vol. 100, No. GT8, pp. 889-904 (1974).
31. Mesri, G., Rokhsar, A. and Bohor, B. F., “Composition and compressibility of typical samples of Mexico city clay”, Geotechnique, Vol. 25, No. 3, pp. 527-554 (1975).
32. Mesri, G., and Godlewski, P.M., “Time- and stress-compressibility interrelationship”, Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT5, pp. 417-430 (1977).
33. Mesri, G. and Choi, Y. K., Discussion on “Excess pore water pressure and preconsolidation effect developed in normally consolidated clay of some age”, by Yokitoshi, M., Soils and Foundations, Vol. 20, No. 4, pp. 143-148 (1980).
34. Mesri, G., Stark, T.D ., Ajlouni, M. A., and Chen, C. S., “Secondary compression of peat with or without surcharging”, J. Geotech. Geoenviron. Eng., ASCE, Vol. 123, No. 5, pp. 411-421 (1997).
35. Nagaraj, T. S. and Srinivasa Murthy, B. R., “Technical note: Prediction of the preconsolidation pressure and recompression index of soils”, Geotechnical Testing Journal, Vol. 8, No. 4, pp. 199-202 (1985).
36. Narasimha Raju, P. S. R., Pandian, N. S. and Nagaraj, T. S., “Analysis and estimation of the coefficient of consolidation”, Geotechnical Testing Journal, Vol. 18, No. 2, pp. 252-258 (1995).
37. Newland, P. L., and Allely, B. H., “A study of the consolidation characteristics of a clay”, Geotechnique, Vol. 10, pp. 62-74 (1960).
38. Olson, R. E., “Technical note: Consolidation under time dependent loading”, Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT1, pp. 55-60 (1977).
39. Olson, R. E., and Ladd, C. C., “One-dimensional consolidation problems”, Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. GT1, pp. 11-30. (1979)
40. Quigley, R. M. and Ogunbadejo, T. A., “Clay layer fabric and oedometer consolidation of a soft varved clay”, Canadian Geotechnical Journal, Vol. 9, pp 165-175 (1972).
41. Raymond, G. P. and Wahls, H. E., “Estimating 1-dimensional consolidation, including secondary compression, of clay loaded from overconsolidated to normally consolidated state”, Special Report 163, Transportation Research Board, Washington, D.C., pp. 17-23 (1976).
42. Schmertmann, J. H., “The undisturbed consolidation behavior of clay”, Transactions, ASCE, Vol. 120, pp. 1201-1227 (1955).
43. Sirdharan, A., Rao, S. M. and Murthy, N. S., “Compressbility behaviour of homoionized bentonites”, Geotechnique, Vol. 36, No. 4, pp. 551-564 (1986).
44. Sridharan, A., Prakash, K., and Asha, S. R., “Consolidation behavior of soils”, Geotechnical Testing Journal, Vol. 18, No. 1, pp. 58-68 (1995).
45. Sridharan, A., Prakash, K., and Asha, S. R., “Consolidation behavior of clayey soils under radial drainage”, Geotechnical Testing Journal, Vol. 19, No. 4, pp. 421-431 (1996).
46. Tavenas, F., Jean., P., Leblond, P. and Leroueil, S., “The permeability of natural soft clays. part Ⅱ. permeability characteristics”, Canadian Geotechnical Journal, Vol. 20, No. 4, pp. 645-660 (1983).
47. Taylor, D. W., Fundamentals of Soil Mechanics, Wiley, New York (1948).
48. Terzaghi, K., Theoretical Soil Mechanics, Wiley, New York (1943).
49. Todo, H., Sagae, T. and Adachi, K., “Compressibility model for highly sensitive Singapore clay”, Proc. of the 11th Southeast Asian Geotechnical Conference, pp. 251-256, Singapore (1993).
50. Tsuchida, T., “A new concept of e~logp relationship for clays”, Proc. of the 9th Asian Regional Conference on Soil Mechanics and Foundation Engineering, pp. 87-90, Bangkok, Thailand (1991).
51. Tsukada, Y. and Yasuhara, K., “Scale effects in one-dimensional consolidation of clay”, Proceedings of the International Symposium on Compression and Consolidation of Clayey Soils, Japan, Vol. 1, pp. 211-226 (1995).
52. Wei, J., Ho, S. K. and Lourdesamy, I., “Use of vertical drains to improve soft clays at the Woodlands Reclamation Project, Singapore”, Proc. of the 11th southeast Asian Geotechnical Conference, pp. 421-427, Singapore (1993)
53. 劉醇棟,「基隆河黏土垂直排水帶行為及壓密性質之研究」,碩士論文,國立中央大學土木工程學系,中壢,台灣 (1998)。
54. 游明縑,「不同試驗方法對黏土壓縮與壓密性質之影響」,碩士論文,國立中央大學土木工程學系,中壢,台灣 (2000)。
55. 譚志豪、黃俊鴻、方仲欣,「基隆河黏土垂直排水帶案例之反算分析」,第八屆大地工程研討會,屏東,台灣 (1999)。
56. 張光永、吳玉山、李彰明,「超載預壓法閾值問題的室內試驗研究」,岩土力學,第20卷,第1期,第78-83頁 (1999)。
57. 曾國熙等人,地基處理手冊,中國建築工業出版社,第45-119頁 (1988)。
58. 許全福,數值分析(第五版),東華書局,台北,台灣 (1995)。