| 研究生: |
陳震瑜 Chen Chen Yu |
|---|---|
| 論文名稱: |
高速成像通訊系統可行性之研究 Study of the High Speed Imaging Communication System |
| 指導教授: |
孫慶成
Ching-Cherng Sun 楊宗勳 Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 稀疏碼 、高速成像通訊系統 |
| 外文關鍵詞: | Sparse Code, High Speed Imaging Communication System |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,我們希望藉由Micro LEDs能夠高速切換亮暗態的特性,設計出一套全新的通訊系統,目前市面上的通訊系統幾乎都是使用無線電波來傳輸資訊,雖然也有以光做為傳輸媒介的論文被發表,但大多數是以雷射光作為輸出端,只有少數的論文是以Micro LEDs作為輸出端,並且都只使用少量光源,藉由調控頻率與振幅來傳遞資訊,尚未有人於實驗中使用大量的光源做為輸出端,因此我們想以此做為突破口,建立一套全新的成像通訊系統。
為了建立一套異於他人的通訊系統,我們首先須針對傳輸資料進行編碼,這也是本團隊在本實驗中最大的創新,我們利用稀疏碼的觀念為基礎,分別建立了以七位元與九位元為基底的編碼圖形,每頁以七位元為基底的編碼圖形可帶有226,802位元的資料量,而每頁以九位元為基底的編碼圖形可帶有291,600位元的資料量。接著本團隊研究出一項較不同的編碼規則,建立了以十四位元為基底的編碼圖形,此圖形為本團隊設計出的最高資料量共含有453,600位元的編碼。
在經過多次實驗後,驗證了所有位元編碼的可行性,並嘗試以不同光學系統來提升傳遞距離,期望能設計出一套可以高速且可遠距離傳輸的通訊系統。
In this thesis, our team hopes to use the fast switching ability of the Micro LEDs display to build a high speed imaging communication system. The communication system on the market now usually transmit data by using the amplitude and frequency of the radio wave. Only few experiments use laser diode or Micro LEDs as the source of the communication system, and the total number of the light sources are usually less than five. Therefore, using the high number of light sources to transmit data is the advantage of our design.
In order to lower the error rate of our communication, we form some special specifications for our coding. Finally, we got three different kinds of coding. The coding graphics based on seven bits and nine bits are established first. The coding graphics based on seven bits per page can contain 226,802 bits of data, and the coding graphics based on nine bits per page can contain 291600 bits of data. Then our team researched a different coding rule and established a coding pattern based on 14 bits, which has the highest data volume coding rule designed by our team and contain 453,600 bits of data per page. After many experiments, three codings were verified and proved that our design is successful . After the feasibility of our design had been proven, we try to improve the transmission distance with different optical systems, hoping to design a set of communication systems that can transmit at high speed and can be transmitted over long distances.
1. S. F. B. Morse, Samuel FB Morse (Cambridge University Press, Cambridge, 2014).
2. E. S. Grosvenor, and M. Wesson, Alexander Graham Bell (New Word City, Boston, 2016).
3. R. W. Burns, John Logie Baird, Television Pioneer (Iet, 2000).
4. B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel, L. G. Roberts, and Wolff, “The past and future history of the Internet,” Commun. ACM 40, 102-108 (1997).
5. Y.-W. Yu, Y.-C. Chen, K.-H. Huang, C.-Y. Cheng, T.-H. Yang, S.-H. Lin, and C. C. Sun, “Reduction of phase error on phase-only volume-holographic disc rotation with pre-processing by phase integral,” Opt. Express 28, 28573-28583 (2020).
6. Max Roser, “1990年至2016年網路使用總人口數統計表,” https://ourworldindata.org/internet#the-rise-of-social-media
7. 歷代通訊系統規格介紹, http://net-informations.com/q/diff/generations.html
8. 第五代通訊系統規格介紹, https://www.sicomtesting.com/en/blog/dal-1g-al-5g-il-passato-e-il-futuro-degli-standard-gsm-umts-hspa-ed-lte/
9. Shanmugam, “Digital and analog communication systems,” NASA STI/Recon Technical Report A 80, 23225 (1979).
10. 第二代通訊系統規格介紹, https://en.wikipedia.org/wiki/2G
11. 第三代通訊系統規格介紹, https://en.wikipedia.org/wiki/3G
12. J. Vcelak, T. Javornik, J. Sykora, G. Kandus, and S. J. E. R. Plevel, “Multiple Input Multiple Output wireless systems,” Electrotechnical Review, 70, 234-239 (2003).
13. M. Ding, Multiple-input multiple-output wireless system designs with imperfect channel knowledge (Queen's University, 2008).
14. Y. G. Li, and G. L. Stuber, Orthogonal frequency division multiplexing for wireless communications (Springer Science & Business Media, 2006).
15. S. B. Weinstein, “The history of orthogonal frequency-division multiplexing,” IEEE Commun. Mag. 47, 26-35 (2009).
16. E. Björnson, L. Sanguinetti, J. Hoydis, and Debbah, “Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?” IEEE Trans. Wirel. Commun. 14, 3059-3075 (2015)
17. P. Wang, Y. Li, L. Song, and Vucetic, “Multi-gigabit millimeter wave wireless communications for 5G: From fixed access to cellular networks,” IEEE Commun. Mag. 53, 168-178 (2015).
18. J. Wells, Multi-gigabit microwave and millimeter-wave wireless communications (Artech House, 2010).
19. D. Khandal, Jain, and C. Technology, “Li-fi (light fidelity): The future technology in wireless communication,” IJICT 4, 1687-1694 (2014).
20. A. Chakraborty, T. Dutta, S. Mondal, Nath, and M. Studies, “Latest advancement in Light Fidelity (Li-Fi) Technology,” International Journal of Advance Research in Computer Science and Management Studies 5, 12 (2017).
21. “Introduction of Li-Fi,” https://en.wikipedia.org/wiki/Li-Fi
22. C.-Y. Li, H.-H. Lu, T.-C. Lu, W.-S. Tsai, B.-R. Chen, C.-A. Chu, C.-J. Wu, and C.-H. Liao, “A 100m/40Gbps 680-nm VCSEL-based LiFi transmission system,” in CLEO: Science and Innovations (Optical Society of America2016), p. SW1F. 5.
23. 第五、六代通訊系統規格介紹與比較,https://www.qualcomm.com/5g/what-is-5g
24. R. Noé, Essentials of modern optical fiber communication (Springer, 2010).
25. S. Gupta, Textbook on optical fiber communication and its applications (PHI Learning Pvt. Ltd., 2018)
26. Y. Huang, E.-L. Hsiang, M.-Y. Deng, L. S. Wu, and Applications, “Mini-LED, Micro-LED and OLED displays: Present status and future perspectives,” Light Sci. Appl. 9, 1-16 (2020)
27. P. Tian, X. Liu, S. Yi, Y. Huang, S. Zhang, X. Zhou, L. Hu, L. Zheng, and R. J. O. e. Liu, “High-speed underwater optical wireless communication using a blue GaN-based micro-LED,” Opt. Express 25, 1193-1201 (2017).
28. X. Liu, R. Lin, H. Chen, S. Zhang, Z. Qian, G. Zhou, X. Chen, X. Zhou, L. Zheng, and R. J. A. P. Liu, “High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays,” ACS Photonics 6, 3186-3195 (2019).
29. M. S. Islim, R. X. Ferreira, X. He, E. Xie, S. Videv, S. Viola, S. Watson, N. Bamiedakis, R. V. Penty, and I. H. J. P. R. White, “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photonics Res. 5, A35-A43 (2017).
30. S. R. Gottesman, and E. E. Fenimore,“New family of binary arrays for coded aperture imaging,”Appl. Opt. 28, 4344-4352 (1989).
31. S. Hojjatoleslami, M. Avanaki, and Podoleanu, “Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm,” Appl. Opt. 52, 5663-5670 (2013).
32. W. H. Richardson,“Bayesian-Based Iterative Method of Image Restoration,”J. Opt. Soc. Am. 62, 55-59 (1972).
33. L. B. Lucy,“An iterative technique for the rectification of observed distributions,”The Astronomical Journal 79, 745 (1974).
34. Zeiss Microscopy, “What Affects the Point Spread Function ?,” https://bitesizebio.com/22166/a-beginners-guide-to-the-point-spread-function-2/
35. T. R. Corle and G. S. Kino, “Introduction of the Point Spread Function ,” https://www.sciencedirect.com/topics/engineering/point-spread-function
36. X. Ding, Y. Fu, J. Zhang, Y. Hu, and S. Fu, “An Approach to Measuring the Point Spread Function of the Confocal Raman Microscope,” Applied Spectroscopy 74, 1230-1237 (2020).
37. P. Mouroulis, and J. Macdonald, Geometrical optics and optical design (Oxford University Press, USA, 1997).
38. E. E. Fenimore, and Cannon, “Coded aperture imaging with uniformly redundant arrays,” Applied optics, 17, 337-347 (1978).
39. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and Sullivan, “Static two-dimensional aperture coding for multimodal, multiplex spectroscopy,” Applied optics 45, 2965-2974 (2006).
40. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 2002)
41. Baraniuk, “Compressive sensing [lecture notes],” IEEE signal processing magazine 24, 118-121 (2007).
42. “Introduction of Complementary metal–oxide–semiconductor,” https://en.wikipedia.org/wiki/CMOS
43. S. Hassani, “Dirac delta function,” in Mathematical methods (Springer, 2009) , 139-170.
44. “Dirac delta function,” https://en.wikipedia.org/wiki/Dirac_delta_function
45. “Introduction to the Electromagnetic Spectrum,” https://science.nasa.gov/ems/01_intro
46. R. Bian, I. Tavakkolnia, and H. Haas, “15.73 Gb/s visible light communication with off-the-shelf LEDs,” Journal of Lightwave Technology 37, 2418-2424 (2019).
47. S. Motwani, “Tactical Drone for Point-to-Point data delivery using Laser-Visible Light Communication (L-VLC),” in 2020 3rd International Conference on Advanced Communication Technologies and Networking (CommNet)(IEEE2020), pp. 1-8.
48. L. Wang, Z. Wei, C.-J. Chen, L. Wang, H. Fu, L. Zhang, K.-C. Chen, M.-C. Wu, Y. Dong, and Z. J. P. R. Hao, “1.3 GHz EO bandwidth GaN-based micro-LED for multi-gigabit visible light communication,” Photonics Res. 9, 792-802 (2021).
49. S. Zhang, Z. Wei, Z. Cao, K. Ma, C.-J. Chen, M.-C. Wu, Y. Dong, and H. Y. Fu, “A High-Speed Visible Light Communication System Using Pairs of Micro-size LEDs,” IEEE Photonics Technol. Lett. (2021).
50. R. Karlicek, C. C. Sun, G. Zissis, and R. Ma, Handbook of advanced lighting technology (Springer, 2017).
51. C.-L. Liao, Y.-F. Chang, C.-L. Ho, and M. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34, 611-613 (2013).
52. V. N. Mahajan, Aberration theory made simple (SPIE Press, 1991).