| 研究生: |
溫馨 Shin Wen |
|---|---|
| 論文名稱: |
以電漿觸媒系統去除氣流中CFC-12及HCFC-22之可行性探討 Removal of CFC-12 and HCFC-22 from Gas Stream via Combined Plasma Catalysis |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 臭氧破壞物質 、電漿觸媒 、CFC 、HCFC 、全球暖化 |
| 外文關鍵詞: | CFC, Global warming, Ozone depleting substances, Plasma catalysis, HCFC |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業及生活中常用的冷媒材料為含鹵素之化合物,如氟氯碳化合物(chlorofluorocarbons, CFCs)或含氫之氟氯碳化合物(hydrochlorofluorocarbons, HCFCs)。由於CFCs及HCFCs的化學穩定性,最終將由對流層擴散至平流層,並經由光解反應釋出氯原子進而破壞平流層臭氧,此外CFCs及HCFCs具高全球暖化潛勢(Global warming potential, GWP)對全球暖化亦有影響,現行處理CFCs及HCFCs相關技術包括高溫焚化、觸媒催化及電漿技術等。本研究旨在分析電漿觸媒系統對於氣流中CFC-12及HCFC-22之去除效率及機制,並可分成三個部分:(1)去除CFC-12及HCFC-22之電漿觸媒系統開發;(2)進行電漿觸媒之機制分析;(3) 評估其可行性與對環境之效益。結果顯示利用電漿觸媒法具有去除CFC及HCFC之可行性,在進流濃度為800 ppm、總流量為500 sccm、添加1%O2且操作電壓為17 kV時,CFC-12及HCFC-22之最高去除效率分別達99.0%及99.4%,其能量效率分別為4.9 g/kWh及3.3 g/kWh;CFC-12及HCFC-22經電漿反應後生成之副產物主要為CO2、NOX,此外因氮分子之解離能、電離電勢較激發為亞穩態分子N2(A3∑u+)高,加上CFC-12及HCFC-22具有較大的解離性電子反應截面易與高能電子反應,其去除機制主要經由電漿產生之N2(A3∑u+)及高能電子進行分解反應。
Halogen-containing compounds including chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are widely used in industry. Due to their chemical stability, CFCs and HCFCs, gradually diffuse from the troposphere to the stratosphere and catalyze the destruction of ozone through photodegradation. In addition, high global warming potentials (GWP) of CFCs and HCFCs also aggravate global warming. Current technologies for treating CFCs and HCFCs include high-temperature incineration, catalysis, and plasma destruction. This study aims to develop a catalyst with good activity and combine it with a plasma reactor as a hybrid system for the removal of CFC-12 and HCFC-22. The study is divided into three parts: (1) Development of plasma catalyst system for removing CFC-12 and HCFC-22 (2) Elucidation of plasma catalysis mechanism (3) Assessment of feasibility and environmental benefit. The results show that combined plasma catalyst system is effective in removing CFC-12 and HCFC-22. The highest removal efficiencies of CFC-12 and HCFC-22 are 99.0% and 99.4% respectively as the operating conditions are controlled at applied voltage=17 kV, gas flow rate= 500 sccm, CFC-12 or HCFC-22= 800 ppm and O2= 1%. The byproducts produced by plasma reaction of CFC-12 and HCFC-22 are CO2, and NOX. The dissociation energy and ionization potential of nitrogen molecules are higher than that of excited metastable molecules (N2(A3∑u+)). In addition, CFC-12 and HCFC-22 are easy to react with high-energy electrons and have large dissociative electron reaction cross sections. Therefore, the main removal mechanism is the decomposition reaction of N2(A3∑u+) and high-energy electrons generated by plasma.
AFEAS. (2006). Research and Assessment program. Retrieved from https://agage.mit.edu/data/afeas-data
Atkinson, R., Baulch, D. L., Cox, R. A., Jr., R. F. H., Kerr, J. A., Rossi, M. J., & Troe, J. (1997). Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. Journal of Physical and Chemical Reference Data, 26(3), 521-1011.
Atkinson, R., Baulch, D. L., Cox, R. A., Jr., R. F. H., Kerr, J. A., & Troe, J. (1992). Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. Journal of Physical and Chemical Reference Data, 21(6), 1125-1568.
Beckham, L. J., Fessler, W. A., & Kise, M. A. (1951). Nitrosyl Chloride. Chemical Reviews, 48(3), 319-396.
Bessho, M., Hattori, T., Danno, M., Ikeda, T., & Okada, Y. (2000). Development of CFCs Decomposition System Using Microwave Plasma. The Reference Collection of Annual Meeting, 37, 83-87.
Bickle, G. M., Suzuki, T., & Mitarai, Y. (1994). Catalytic Destruction of Chlorofluorocarbons and Toxic Chlorinated Hydrocarbons. Applied Catalysis B: Environmental, 4(2), 141-153.
Butkovskaya, N. I., Larichev, M. N., Leipunskii, I. O., Morozov, I. I., and Talroze, V. L. (1978). Mass-spectrometric investigation of the elemental reaction of fluorine-atoms with difluorochloromethane. Kinetics and Catalysis, 19(4), 647-682.
Carreon, M. L. (2019). Plasma Catalysis: a Brief Tutorial. Plasma Research Express, 1(4), 043001.
Clyne, M. A. A., MacRobert, A. J., & Stief, L. J. (1985). Elementary reactions of the NCl radical. Part 2.—Kinetics of the NCl + ClO and NCl + NO reactions. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 81(1), 159-167.
Clyne, M. A. A., & Watson, R. T. (1974). Kinetic studies of diatomic free radicals using mass spectrometry. Part 2.—Rapid bimolecular reactions involving the ClO X2Πradical. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70(0), 2250-2259.
DeMore, W. B. S., S.P.; Golden, D.M.; Hampson, R.F.; Kurylo, M.J.; Howard, C.J.; Ravishankara, A.R.; Kolb, C.E.; Molina, M.J. (1997). Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12. JPL Publication 97-4.
Deng, X., Ma, Z., Yue, Y., & Gao, Z. (2001). Catalytic Hydrolysis of Dichlorodifluoromethane over Nanosized Titania-Supported Titanyl Sulfate. Journal of Catalysis, 204(1), 200-208.
Dincer, I. (2018). Refrigerants. In Dincer, I. (Ed.), Refrigeration Systems and Applications (pp. 435-474). Oxford: Elsevier.
Egorov, V. I. T., S.M.; Gorban, N.I.; Balakhnin, V.P. (1979). Quantitative study of the elementary reactions of oxygen and hydrogen atoms with difluorochloromethane. Kinetics and Catalysis, 20.
EPA. (2019). Ozone layer protection in Taiwan. Retrieved from https://www.saveoursky.org.tw/ozone/
Estellé, J., Ruz, J., Cesteros, Y., Fernández, R., Salagre, P., Medina, F., & Sueiras, J. E. (1996). Surface structure of bulk nickel catalysts, active in the gas-phase hydrodechlorination reaction of aromatics. Journal of the Chemical Society, Faraday Transactions, 92(15), 2811-2816.
Freeman, C. G., & Phillips, L. F. (1968). Kinetics of chlorine oxide reactions. II. The reaction of nitrogen atoms with Cl2O[chlorine oxide]. The Journal of Physical Chemistry, 72(8), 3028-3030.
Gillespie, H. M., & Donovan, R. J. (1976). Reaction of O(21D2) atoms with chlorofluoromethanes: Formation of ClO. Chemical Physics Letters, 37(3), 468-470.
Gillespie, H. M., Garraway, J., & Donovan, R. J. (1977). Reaction of O(21D2) with halomethanes. Journal of Photochemistry, 7(1), 29-40.
Ha, J. M., Kim, D. W., Kim, J. H., Ahn, B., Kim, Y. J., & Jeong Won, K. (2011). High-temperature hydrodechlorination of ozone-depleting chlorodifluoromethane (HCFC-22) on supported Pd and Ni catalysts. Journal of Environmental Science and Health, Part A, 989-996.
Han, W. F., Li, X. L., Liu, B., Li, L. C., Tang, H. D., Li, Y., Lu, C. S., & Li, X. N. (2019). Microwave Assisted Combustion of Phytic Acid for the Preparation of Ni2P@C as a Robust Catalyst for Hydrodechlorination. Chemical Communications, 55(63), 9279-9282.
Harling, A. M., Whitehead, J. C., & Zhang, K. (2005). NOx Formation in the Plasma Treatment of Halomethanes. The Journal of Physical Chemistry A, 109(49), 11255-11260.
Herron, J. T. (1999). Evaluated Chemical Kinetics Data for Reactions of N(2D), N(2P), and N2(A 3Σu+) in the Gas Phase. Journal of Physical and Chemical Reference Data, 28(5), 1453-1483.
Herron, J. T. (2001). Modeling Studies of the Formation and Destruction of NO in Pulsed Barrier Discharges in Nitrogen and Air. Plasma Chemistry and Plasma Processing, 21(4), 581-609.
IPCC. (2014). Fifth Assesment Report. Retrieved from https://www.ipcc.ch/assessment-report/ar5/
Juszczyk, W., Malinowski, A., & Karpiński, Z. (1998). Hydrodechlorination of CCl2F2 (CFC-12) over γ-alumina Supported Palladium Catalysts. Applied Catalysis A: General, 166(2), 311-319.
Kaiser, E. W., Wallington, T. J., & Hurley, M. D. (1995). Kinetic study of the reaction of chlorine atoms with CF3I and the reactions of CF3 radicals with O2, Cl2 and NO at 296 K. International Journal of Chemical Kinetics, 27(3), 205-218.
Karmakar, S., & Greene, H. L. (1995). An Investigation of CFC12 (CCl2F2) Decomposition on TiO2 Catalyst. Journal of Catalysis, 151(2), 394-406.
Kennedy, E. M., Kundu, S. K., Mackie, J. C., Holdsworth, C. I., Molloy, T. S., Gaikwad, V. V., & Dlugogorski, B. Z. (2012). Conversion of Fluorine-Containing Ozone-Depleting and Greenhouse Gases to Valuable Polymers in a Nonthermal Plasma. Industrial & Engineering Chemistry Research, 51(34), 11279-11283.
Kim, D. J., Choi, Y., & Kim, K. S. (2001). Effects of Process Variables on NOx Conversion by Pulsed Corona Discharge Process. Plasma Chemistry and Plasma Processing, 21(4), 625-650.
Kowalczyk, J., Jówko, A., & Symanowicz, M. (1998). Kinetics of radical reactions in freons. Journal of Radioanalytical and Nuclear Chemistry, 232(1), 75-78.
Kumaran, S. S., Lim, K. P., Michael, J. V., & Wagner, A. F. (1995). Thermal Decomposition of CF2Cl2. The Journal of Physical Chemistry, 99(21), 8673-8680.
Kundu, S. K., Kennedy, E. M., Mackie, J. C., Holdsworth, C. I., Molloy, T. S., Gaikwad, V. V., & Dlugogorski, B. Z. (2013). Study on the Reaction of CCl2F2 with CH4 in a Dielectric Barrier Discharge Nonequilibrium Plasma. Plasma Processes and Polymers, 10(10), 912-921.
Kundu, S. K., Kennedy, E. M., Mackie, J. C., Holdsworth, C. I., Molloy, T. S., Gaikwad, V. V., & Dlugogorski, B. Z. (2016a). Effect of Methane on the Conversion of HFC-134a in a Dielectric Barrier Discharge Non-equilibrium Plasma Reactor. Chemical Engineering Journal, 284, 412-421.
Kundu, S. K., Kennedy, E. M., Mackie, J. C., Holdsworth, C. I., Molloy, T. S., Gaikwad, V. V., & Dlugogorski, B. Z. (2016b). Experimental Investigation of the Reaction of HCFC-22 and Methane in a Dielectric Barrier Discharge Non-equilibrium Plasma. Chemical Engineering Journal, 301, 73-82.
Liu, C., Vissokov, G. P., & Jang, B. W. L. (2002). Catalyst preparation using plasma technologies. Catalysis Today, 72(3), 173-184.
Ma, Z., Hua, W. M., Tang, Y., & Gao, Z. (2000). Catalytic Decomposition of CFC12 over Solid Acids WO3/MxOy (M=Ti, Sn, Fe). Journal of Molecular Catalysis A Chemical, 159, 335-345.
Makkee, M., Wiersma, A., van de Sandt, E. J. A. X., van Bekkum, H., & Moulijn, J. A. (2000). Development of a Palladium on Activated Carbon for a Conceptual Process in the Selective Hydrogenolysis of CCl2F2 (CFC-12) into CH2F2 (HFC-32). Catalysis Today, 55(1), 125-137.
Manzer, L. E., & Nappa, M. J. (2001). The Key Role of Catalysis in the Phase-Out of Chlorofluorocarbons (CFCs). Applied Catalysis A: General, 221(1), 267-274.
McCulloch, A., Ashford, P., & Midgley, P. M. (2001). Historic Emissions of Fluorotrichloromethane (CFC-11) Based on a Market Survey. Atmospheric Environment, 35(26), 4387-4397.
McCulloch, A., Midgley, P. M., & Ashford, P. (2003). Releases of Refrigerant Gases (CFC-12, HCFC-22 and HFC-134a) to the Atmosphere. Atmospheric Environment, 37(7), 889-902.
Mok, Y. S., Lee, S., & Chang, M. S. (2009). Destruction of Chlorodifluoromethane (CHClF2) by Using Dielectric Barrier Discharge Plasma. IEEE Transactions on Plasma Science, 37(3), 449-455.
Morato, A., Alonso, C., Medina, F., Cesteros, Y., Salagre, P., Sueiras, J. E., Tichit, D., & Coq, B. (2001). Palladium Hydrotalcites as Precursors for the Catalytic Hydroconversion of CCl2F2 (CFC-12) and CHClF2 (HCFC-22). Applied Catalysis B: Environmental, 32(3), 167-179.
Morato, A., Alonso, C., Medina, F., Salagre, P., Sueiras, J. E., Terrado, R., & Giralt, A. (1999). Conversion under Hydrogen of Dichlorodifluoromethane and Chlorodifluoromethane over Nickel Catalysts. Applied Catalysis B: Environmental, 23(2), 175-185.
Morato, A., Medina, F., Sueiras, J., Cesteros, Y., Salagre, P., De Ménorval, L., Tichit, D., & Coq, B. (2003). Characterization and Catalytic Properties of Several KMg1-xPdxF3 with Perovskite-like Structures for the Hydroconversion of CHClF2. Applied Catalysis B: Environmental, 42, 251-264.
Ning, P., Wang, X. Y., Bart, H. J., Liu, T. C., Huang, J., Wang, Y. M., & Gao, H. (2011). Catalytic Decomposition of CFC-12 over Solid Superacid Mo2O3/ZrO2. Journal of Environmental Engineering, 137(10), 897-902.
Ogata, A., Kim, H. H., Futamura, S., Kushiyama, S., & Mizuno, K. (2004). Effects of Catalysts and Additives on Fluorocarbon Removal with Surface Discharge Plasma. Applied Catalysis B: Environmental, 53(3), 175-180.
Oh, J., Mok, Y. S., Lee, S. B., & Chang, M. (2009). Destruction of HCFC-22 and Distribution of Byproducts in a Nonthermal Plasma Reactor Packed with Dielectric Pellets. Journal of Korean Physical Society, 54, 1539.
Ohno, M., Ozawa, Y., & Ono, T. (2007). Decomposition of HFC134a Using Arc Plasma. International Journal of Plasma Environmental Science and Technology, 1.
Prinn, R. G. W., R.F.; Arduini, J.; Arnold, T.; Fraser, P.J.; Ganesan, A.L.; Gasore, J.; Harth, C.M.; Hermansen, O.; Kim, J.; Krummel, P. B.; Li, S.; Loh, Z.M.; Lunder, C.R.; Maione, M.; Manning, A.J.; Miller, B.R.; Mitrevski, B.; Mühle, J.; O’Doherty, S.; Park, S.; Reimann, S.; Rigby, M.; Salameh, P.K.; Schmidt, R.; Simmonds, P.G.; Steele, L.P.; Vollmer, M.K.; Wang, R.H.; and Young, D. (2019). The ALE/GAGE/AGAGE Data Base. http://agage.mit.edu/data
Pritchard, G. O., & Perona, M. J. (1969). The photolysis of pentafluoroacetone. International Journal of Chemical Kinetics, 1(4), 413-425.
Raizer, Y. P., Kisin, V. I., & Allen, J. E. (2011). Gas Discharge Physics: Springer Berlin Heidelberg.
Ralph, D. G., & Wayne, R. P. (1982). Reactions of the chlorodifluoromethyl radical formed in the photolysis of halogenocarbon + ozone mixtures. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 78(11), 1815-1823.
Ricketts, C. L., Wallis, A. E., Whitehead, J. C., & Zhang, K. (2004). A Mechanism for the Destruction of CFC-12 in a Nonthermal, Atmospheric Pressure Plasma. The Journal of Physical Chemistry A, 108(40), 8341-8345.
Rossi, M. J., Barker, J. R., & Golden, D. M. (1979). Infrared multiphoton generation of radicals: A new technique for obtaining absolute rate constants. Application to reactions of CF3. The Journal of Chemical Physics, 71(9), 3722-3727.
Rowland, F. S., & Molina, M. J. (1975). Chlorofluoromethanes inThe Environment. Reviews of Geophysics, 13(1), 1-35.
Slagle, I. R., & Gutman, D. (1982). Kinetics of free radicals produced by infrared multiphoton-induced decomposition. 2. Formation of acetyl and dichlorofluoromethyl radicals and their reactions with nitrogen dioxide. Journal of the American Chemical Society, 104(18), 4741-4748.
Spiess, F. J., Chen, X., Brock, S. L., Suib, S. L., Hayashi, Y., & Matsumoto, H. (2000). Destruction of Freons by the Use of High-Voltage Glow Plasmas. The Journal of Physical Chemistry A, 104(47), 11111-11120.
Tajima, M., Niwa, M., Fujii, Y., Koinuma, Y., Aizawa, R., Kushiyama, S., Kobayashi, S., Mizuno, K., & Ohuchi, H. (1997). Decomposition of Chlorofluorocarbons on W/TiO2–ZrO2. Applied Catalysis B: Environmental, 14(1), 97-103.
Tang, X. L., Wang, J. G., Yi, H. H., Zhao, S. Z., Gao, F. Y., & Chu, C. (2018). Nitrogen Fixation and NO Conversion using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products. Plasma Chemistry and Plasma Processing, 38(3), 485-501.
Teodoru, S., Kusano, Y., & Bogaerts, A. (2012). The Effect of O2 in a Humid O2/N2/NOx Gas Mixture on NOx and N2O Remediation by an Atmospheric Pressure Dielectric Barrier Discharge. Plasma Processes and Polymers, 9(7), 652-689.
Ueno, H., Iwasaki, Y., Tatsuichi, S., & Soufuku, M. (1997). Destruction of Chlorofluorocarbons in a Cement Kiln. Journal of the Air & Waste Management Association, 47(11), 1220-1223.
UNEP. (2018). Handbook for the Montreal Protocol on Substances that Deplete the Ozone Layer United Nations Environment Programme.
Wallis, A., Whitehead, J., & Zhang, K. (2007). Plasma-assisted Catalysis for the Destruction of CFC-12 in Atmospheric Pressure Gas Streams Using TiO2. Catalysis Letters, 113, 29-33.
Wang, J., Yi, H., Tang, X., Zhao, S., Gao, F., Zhang, R., & Yang, Z. (2017). Products Yield and Energy Efficiency of Dielectric Barrier Discharge for NO Conversion: Effect of O2 Content, NO Concentration, and Flow Rate. Energy & Fuels, 31(9), 9675-9683.
Wang, Y. F., Lee, W. J., Chen, C. H., & Hsieh, L. T. (1999). Decomposition of Dichlorodifluoromethane by Adding Hydrogen in a Cold Plasma System. Environmental Science & Technology, 33(13), 2234-2240.
Wang, Y. F., Lee, W. J., Chen, C. H., Wu, Y. P., & Chang Chien, G. P. (2000). Reaction Mechanisms in Both a CCl2F2/O2/Ar and a CCl2F2/H2/Ar RF Plasma Environment. Plasma Chemistry and Plasma Processing, 20(4), 469-494.
Wirth, S., Harnisch, F., Quade, A., Brüser, M., Brüser, V., Schröder, U., & Savastenko, N. A. (2011). Enhanced Activity of Non-Noble Metal Electrocatalysts for the Oxygen Reduction Reaction Using Low Temperature Plasma Treatment. Plasma Processes and Polymers, 8(10), 914-922.
Wongdontri, S. W., Simonaitis, R., & Heicklen, J. (1978). The reaction of ClOO with NO. Geophysical Research Letters, 5(12), 1005-1008.
Yu, H., Kennedy, E., Adesina, A., & Dlugogorski, B. (2006). A Review of CFC and Halon Treatment Technologies – The Nature and Role of Catalysts. Catalysis Surveys from Asia, 10, 40-54.
Zhang, H. X., Ng, C. F., & Lai, S. Y. (2005). Catalytic Decomposition of Chlorodifluoromethane (HCFC-22) over Platinum Supported on TiO2–ZrO2 Mixed Oxides. Applied Catalysis B: Environmental, 55(4), 301-307.
Zhang, Q. Z., Gu, Y. S., & Wang, S. K. (2003). Theoretical Investigation on the Mechanism and Thermal Rate Constants for the Reaction of Atomic O (3P) with CHF2Cl. The Journal of Physical Chemistry A, 107(17), 3069-3075.
Zheng, X., Xiao, Q., Zhang, Y., Zhang, X. L., Zhong, Y. J., & Zhu, W. D. (2011). Deactivation of Pd/C Catalysts in the Hydrodechlorination of the Chlorofluorocarbons CFC-115 and CFC-12. Catalysis Today, 175(1), 615-618.