跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張明化
Ming-Hua Chang
論文名稱: 電校式電阻感測器校正方法之研究
Research of microbolometer calibration by electrical calibration method.
指導教授: 歐陽盟
Mang Ou-Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 中文
論文頁數: 75
中文關鍵詞: 讀取電路微輻射感測器
外文關鍵詞: Read out circuit, Microbolometer.
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱型紅外線感測器與量子型紅外線感測器相比,雖然反應時間較慢、靈敏度較低,但其可操作在室溫環境下,因此可以擺脫低溫冷卻系統,降低其系統的製作成本、體積及功率消耗。近年來隨著製程、微機電及材料科技的進步,使得熱型紅外線感測器的效能得以提升,增加其應用價值。
    在本論文中將介紹以microbolometer 為偵測器的熱型紅外線感測系統及讀取電路架構,並進行讀取電路之設計,此設計是以Wheatstone bridge與Feedback balance circuit方式來讀取感測器所吸收紅外線的能量。
    吾人採用友力微系統製造公司提供的50μm×50 microbolometer,操作電壓為單電源0.5伏特,所欲讀取之microbolometer的電阻約為220kΩ,TCR 為-0.02/K,讀取電路輸出結果為29.53μV/℃左右。


    Thermal detectors have slow response time and low sensitivity compared with photo detectors, but they can operate in room temperature. For this reason, thermal detectors can get rid of the expensive cryogenic cooling system and reduce the system cost, volume and power consumption. In recent years, by the progressing of fabrication, micromachining and material technologies, these will improve the performance of thermal detectors and increase their applications.
    In this thesis, we will present a thermal detecting system and the architecture of its readout circuit, which utilizes the microbolometer detector. The readout circuit is designed by using Wheatstone bridge and Feedback balance configuration to read out the infrared energy that is absorbed by the microbolometer.
    Based on the microbolometer provided by UNIMEMS. A single power supply of 0.5V is used in these two circuits. The microbolometer with resistance of 220 kΩ and TCR of -0.02/K is used in detecting , and the output result of the readout circuit is about 29.53μV/℃.

    摘要.............................................I 致謝........................................... IV 目錄.............................................V 圖目錄........................................VIII 表目錄..........................................XI 第一章 序論......................................1 1.1 前言...................................1 1.2 研究目的與動機.........................1 1.3 論文架構...............................3 第二章 紅外線感測系統............................4 2.1 輻射理論.....................................4 2.2 紅外線之簡介.................................9 2.3 紅外線感測器................................10 2.3.1 紅外線感測器之分類.......................10 2.3.2 熱型紅外線感測器之種類與比較.............11 2.3.3 為輻感測器之介紹.........................13 2.4 熱輻射傳導之推導............................17 2.5 系統架構....................................18 2.6 電校式原理..................................19 第三章 讀取電路之設計...........................21 3.1 訊號讀取原理及設計考量......................21 3.2 基本讀取電路................................22 3.3 非理想效應之考量............................26 3.4 惠斯頓電橋工作原理..........................30 3.5 Feedback平衡電路工作原理...................31 3.6 放大電路設計................................32 3.7 電校式電路..................................35 第四章 實驗與量測...............................37 4.1 實驗裝置....................................37 4.1.1 鎖相放大器原理...........................38 4.1.2 真空腔體.................................38 4.1.3 熱電致冷片...............................40 4.1.4 PID溫度控制原理.........................42 4.1.5 黑體爐...................................45 4.2 量測方法與結果..............................46 4.2.1 惠斯頓電橋...............................46 4.2.2 Feedback平衡電路........................50 4.3 量測結果分析................................53 第五章 結論與未來展望...........................57 5.1 實驗結論....................................57 5.2 未來展望....................................57 參考文獻.................58

    [1] C. Bonten and C. Tuchert, "Welding of plastics - Introduction into heating by radiation," Journal of Reinforced Plastics and Composites, vol. 21, no. 8, pp. 699-709, 2002.
    [2] 葛紹岩,那鴻悅,「熱輻射性質及其量測」,科學出版社,1989.
    [3] L. A. Klein, Millimeter-wave and Infrared Multisensor Design and Signal Processing Artech House Boston, 1997.
    [4] S. R. Borrello and H. Levinstein, "Preparation and Properties of Mercury-Doped Germanium," Journal of Applied Physics, vol. 33, p. 2947, 2004.
    [5] W. S. BOYLE and G. E. SMITH, "CHARGE COUPLED SEMICONDUCTOR DEVICES," vol. 49, no. 4, pp. 587-593, 1970.
    [6] W. D. Lawson, S. Nielson, E. H. Putley, and A. S. Young, "Preparation and properties of HgTe and mixed crystals of HgTe-CdTe," J. Phys. Chem. Solids, vol. 9, no. 3-4, pp. 325-329, 1959.
    [7] D. Long and J. L. Schmit, "Mercury-Cadmium Telluride and Closely Related Alloys," Semiconductors and Semimetals, 1970.
    [8] W. J. Parrish, F. J. Renda, N. L. Ray, D. G. Maeding, R. E. Eck, and J. R. Toman, "Characterization of a 32× 32 InSb hybrid IR focal plane," 1978 International Electron Devices Meeting, vol. 24 1978.
    [9] K. C. Liddiard, "THIN-FILM RESISTANCE BOLOMETER IR DETECTORS," Infrared Physics, vol. 24, no. 1, pp. 57-64, 1984.
    [10] J. S. Shie, Y. M. Chen, M. Ou-Yang, and B. C. S. Chou, "Characterization and modeling of metal-film microbolometer," Journal of Microelectromechanical Systems, vol. 5, no. 4, pp. 298-306, 1996.
    [11] M. F. TOMPSETT, "Pyroelectric thermal imaging camera tube," vol. ED-18, no. 11, pp. 1070-1074, 1971.
    [12] R. W. WHATMORE, "Pyroelectric devices and materials," Reports on Progress in Physics, vol. 49, pp. 1335-1386, 1986.
    [13] K. Yamashita, A. Murata, and M. Okuyama, "Miniaturized infrared sensor using silicon diaphragm based on Golay cell," Sensors and Actuators, A: Physical, vol. 66, no. 1-3, pp. 29-32, 1998.
    [14] X. He, G. Karunasiri, T. Mei, W. J. Zeng, P. Neuzil, and U. Sridhar, "Performance of microbolometer focal plane arrays under varying pressure," IEEE Electron Device Letters, vol. 21, no. 5, pp. 233-235, 2000.
    [15] C. Changhong, Y. Xinjian, and Z. Xingrong, "Design and fabrication of linear array IR bolometers using VO2 thin film," Infrared and Millimeter waves, Comference Digest, 2000.
    [16] S. Sedky, P. Fiorini, K. Baert, L. Hermans, and R. Mertens, "Characterization and optimization of infrared poly SiGe bolometers," IEEE Transactions on Electron Devices, vol. 46, no. 4, pp. 675-682, 1999.
    [17] E. Socher, Y.Sinai, O. Degani, Y. Nemirovsky, "Modeling, Design and characterization of surface micromachined polysilicon microbolometers," The 22nd Convention of Electronics Engineers in Israel, pp. 56-57, 2002.
    [18] E. Socher, Y. Sinai, and Y. Nemirovsky, "A low-cost CMOS compatible serpentine-structured polysilicon-based microbolometer array," TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003, vol. 1 2003.
    [19] H. K. Lee, J. B. Yoon, E. Yoon, S. B. Ju, Y. J. Yong, W. Lee, and S. G. Kim, "High fill-factor infrared bolometer using micromachined multilevel electrothermal structures," IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1489-1491, 1999.
    [20] A. Tanaka, S. Matsumoto, N. Tsukamoto, S. Itoh, K. Chiba, T. Endoh, A. Nakazato, K. Okuyama, Y. Kumazawa, M. Hijikawa, H. Gotoh, T. Tanaka, and N. Teranishi, "Infrared focal plane array incorporating silicon IC process compatible bolometer," IEEE Transactions on Electron Devices, vol. 43, no. 11, pp. 1844-1850, 1996.
    [21] T. O. C. View, "Characterisation of CMOS compatible uncooled microbolometers," Optical MEMS, 2000 IEEE/LEOS International Conference on, pp. 99-100, 2000.
    [22] D. S. Tezcan, S. Eminoglu, O. S. Akar, and T. Akin, "A low cost uncooled infrared microbolometer focal plane array using the CMOS n-well layer," in Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS) Interlaken: Institute of Electrical and Electronics Engineers Inc., 2001, pp. 566-569.
    [23] D. S. Tezcan, S. Eminoglu, and T. Akin, "A low-cost uncooled infrared microbolometer detector in standard CMOS technology," IEEE Transactions on Electron Devices, vol. 50, no. 2, pp. 494-502, 2003.
    [24] S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, "Low-cost uncooled infrared detectors in CMOS process," Sensors and Actuators A, vol. 109, pp. 102-113, 2003.
    [25] 歐陽盟,輻射溫度計之分析與設計,國立交通大學光電所博士論文,民國87年。
    [26] T. H. Yu, C. Y. Wu, Y. C. Chin, P. Y. Chen, F. W. Chi, J. J. Luo, C. D. Chiang, and Y. T. Cherng, "New CMOS readout circuit for uncooled bolometric infrared focal plane arrays," in Proceedings - IEEE International Symposium on Circuits and Systems, 2 ed Geneva, Switz: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 2000, p. 493.
    [27] Masrangelo,Carlos Horacio, "Thermal Application of Microbridges," University of California,Berkeley, Ph.D. thesis, 1991.
    [28] X. Qian, Y. P. Xu, and G. Karunasiri, "A Tunable Bias-heating Cancellation Circuit for Microbolometer Readout Electronics,".
    [29] T. O. C. View, "A prototype ROIC with bias-heating cancellation for microbolometer IR FPA," Infrared and Millimeter Waves, 2002. Conference Digest. Twenty Seventh International Conference on, pp. 259-260, 2002.
    [30] Y. P. Xu, X. B. Qian, and G. Karunasiri, "Circuit for microbolometer bias-heating cancellation," Electronics Letters, vol. 36, no. 24, pp. 1993-1994, 2000.
    [31] S. Kavadias, P. De Moor, and C. Van Hoof, "CMOS circuit for readout of microbolometer arrays," Electronics Letters, vol. 37, no. 8, pp. 481-482, 2001.
    [32] AD620 Low Cost, Low Power Instrumentation Amplifier, ANALOG DEVICES, 1999.

    QR CODE
    :::