跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃嘉進
Chia-chin Huang
論文名稱: 桁架形狀與構件離散斷面之兩階段最佳化設計法
Truss shape and members'' discrete cross-sectional areas optimization mathod
指導教授: 莊德興
Der-Shin Juang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 169
中文關鍵詞: 離散斷面積最佳化桁架形狀變數構件離散斷面積變數結構最佳化演算法輕量化設計
外文關鍵詞: evolutionary structure optimization method, coordinate variables, discrete sizing variables, minimum weight design, fully stress design
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是針對桁架的形狀與構件的離散斷面積進行桁架結構輕量化設計,文中以結構最佳化演算法(Evolutionary Structure Optimization method, ESO)搭配Fully stress design(FSD)對桁架進行兩階段的最佳化設計,束制條件包括節點的位移、構件的應力和挫屈應力束制。設計先以ESO對桁架進行形狀最佳化設計,將節點的座標作為設計變數,屬於連續變數,使用敏感度分析(Sensitivity analyses)來決定桁架節點移動的方向,並以Kuhn-Tucker必要條件作為收斂條件,判斷是否達到形狀最佳化設計。第二階段再以FSD進行桁架構件斷面尺寸最佳化設計,其設計變數為構件斷面積,屬於離散變數,FSD是以構件應力與容許應力之間的比值來決定構件斷面積需求的下限,再以直接進位方式求得到各個構件的離散斷面積。反覆上述兩階段的設計程序求得輕量化設計結果。ESO-FSD的設計程序將透過數個桁架設計例來說明。


    In this paper, a structural optimization algorithm which combines evolutionary structure optimization method and fully stress design method is proposed to optimize the shape and discrete sizing of a truss structure for weight minimization. Nodal coordinates and members’ cross-sectional areas are considered as design variables. The structure is subjected to stress, Euler buckling stress and nodal displacement constraints under multiple load cases. Two types of design variables with different natures are optimized separately: 1) the evolutionary node shift method is applied to optimize shape variables, and 2) a fully stressed design (FSD) algorithm is applied to optimize sizing variables, and then round up to discrete values. The evolutionary node shift method is following the idea of evolutionary structure optimization (ESO) method. Nodal position is shifted evolutionarily by means of sensitivity analysis. The Kuhn-Tucker optimality conditions are employed as the convergence criteria for shape optimization. Alternating procedure is implemented to couple the two types of design variables and to synthesize the obtained results. The optimum solution is achieved gradually from the initial design by the combination of the two methods.

    中文摘要 I 英文摘要 II 目錄 III 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 研究目的與動機 1 1.2 文獻回顧 4 1.3 研究內容與方法 6 第二章 ESO於形狀最佳化設計之應用 8 2.1 形狀最佳化問題之數學模式 8 2.2 敏感度分析(Sensitivity Analyses) 9 2.3 Kuhn-Tucker必要條件 15 2.4 節點移動的間距 17 第三章 設計程序 20 3.1 引言 20 3.2 ESO應用於形狀最佳化設計之設計程序 21 3.3 FSD (Fully Stress Design)之設計流程 23 3.4 ESO-FSD演算程序 25 3.5 測試算例 28 3.5.1 13桿平面桁架 28 3.5.2 25桿空間桁架(I) 36 3.6 討論 43 第四章 數值算例與參數研究 44 4.1 測試內容介紹 44 4.2 ESO-FSD最佳化設計 45 4.2.1 13桿平面桁架 45 4.2.2 25桿空間桁架(I) 48 4.2.3 25桿空間桁架(II) 52 4.2.4 10桿平面桁架 57 4.2.5 52桿空間桁架(Dome Structure) 62 4.2.6 112桿空間桁架(I) 71 4.2.7 120桿空間桁架(I) 79 4.3 參數研究 85 4.3.1 112桿空間桁架(II) 85 4.3.2 120桿空間桁架(II) 90 第五章 結論與建議 95 5.1 結論 95 5.2 未來研究方向 96 參考文獻 97

    [1] Soh, C. K. and Yang, J. P., “Optimal layout of bridge trusses by genetic algorithms,” Computer-Aided Civil and Infrastructure Engineering, Vol. 13, pp. 247−254 (1998).
    [2] Svanberg, K., “Optimization of geometry in truss design,” Computer
    Methods in Applied Mechanics and Engineering, Vol. 28, pp. 63−80
    (1981).
    [3] Zhou, M. and Xia, R., “An efficient method of truss design for
    optimum geometry,” Computer and Structures 35(2), pp. 115−119
    (1990).
    [4] Zhang, W. H., Domaszewski, M. and Fleury, C., “A new mixed
    convex approximation method with applications for truss
    configuration optimization,” Computers and Structures, Vol. 15, pp.
    237−241 (1998).
    [5] Soh, C. K. and Yang, J. P., “A genetic algorithm approach for shape
    optimization of trusses,” Journal of Computing in Civil Engineering,
    Vol. 8, No. 3, pp. 309−325 (1994).
    [6] Soh, C. K. and Yang, J. P., “Fuzzy controlled genetic algorithm search
    for shape optimization,” Journal of Computing in Civil Engineering,
    Vol. 10, No. 2, pp. 143−150 (1996).
    [7] Soh, C. K. and Yang, J. P., “Structural optimization by genetic
    algorithms with tournament selection,” Journal of Computing in
    Civil Engineering, Vol. 11, No. 3, pp. 195−200 (1997).
    [8] Soh, C. K. and Yang, J. P., “Genetic programming-based approach for
    structural optimization,” Journal of Computing in Civil Engineering,
    Vol. 14, No. 1, pp. 31−37 (2000).
    [9] Wu, S. J. and Chow, P. T., “Integrated discrete and configuration
    optimization of trusses using genetic algorithms,” Computers and
    Structures, Vol. 29, No. 4, pp. 695−702 (1995).
    [10] Rajeev, S. and Krishnamoorthy, C. S., “Genetic algorithms-based
    methodologies for design optimization of trusses,” Journal of
    Structural Engineering, Vol. 123, No. 3, pp. 350−358 (1997).
    [11] Kaveh, A. and Kalatjari, V., “Size/geometry optimization of trusses
    by the force method and genetic algorithm,” ZAMM-Zeitschrift fuer
    Angewandte Mathematik und Mechanik, Vol. 84, No. 5, pp.
    347−357 (2004).
    [12] Fourie, P. C. and Groenwold A., A., “The particle swarm
    optimization algorithm in size and shape optimization,” Struct.
    Multidisc optim., Vol. 23, pp. 259−267 (2002).
    [13] 莊德興,「桁架形狀與桿件離散截面輕量化設計的兩階段無微分
    搜尋法」,中華民國第二十八屆全國力學會議,台北市,台灣大
    學 (2004)。
    [14] Gil, L. and Andreu, A., “Shape and cross-section optimization of a
    truss structure,” Computers and Structures, Vol. 79, pp. 681−689
    (2001).
    [15] Xie, Y. M., and Steven, G. P., “A simple evolutionary procedure for
    structural optimization,” Computers and Structures, Vol. 49, No. 5,
    pp. 885−896 (1993).
    [16] Xie, Y. M., and Steven, G. P., “Evolutionary structural optimization
    for dynamic problem,” Computers and Structures, Vol. 58, No. 6, pp.
    1067−1073 (1996).
    [17] Xie, Y. M., and Steven, G. P., Evolutionary structural optimization,
    Springer, Berlin, (1997).
    [18] Wang, D., Zhang, W. H. and Jiang J. S., “Combined shape and sizing
    optimization of truss structures,” Computational Mechanics Vol. 29,
    pp. 307−312 (2002).
    [19] Wang, D., Zhang, W. H., and Jiang, J. S., “Truss shape optimization
    with multiple displacement constraints,” Computer Methods in
    Applied Mechanics and Engineering, Vol. 191(33), pp. 3597−3612
    (2002).
    [20] Holland, J. H., “Outline for a logical theory of adaptive system,”
    Journal of the Association for Computing Machinery, Vol. 3,
    pp.297−314 (1962).
    [21] Kennedy J. and Eberhart R. C., “Neural network:Particle swarm
    optimization,” Proceedings of the IEEE International Conference,
    Vol. 27, pp.1942−1948 (1995).
    [22] Wah, B. W. and Shang, Y., “A discrete lagrangian-based
    global-search method for solving satisfiability problems, theory and
    applications,” Journal of Global optimization, Vol. 12, No. 1,
    pp.61−99 (1998).
    [23] Chu, D. N., Xie, Y. M., Hira, A. and Steven, G. P., “Evolutionary
    structural optimization for problems with stiffness constraints,”
    Finite Elements in Analysis and Design, Vol. 21, No. 4, pp. 239−251
    (1996).
    [24] Haftka, R. T. and Kamat, M. P., Elements of structural optimization,
    Martinus Nijhoff Publishers, Hague, (1985).
    [25] Chu, D. N., Xie, Y. M., Hira, A. and Steven, G. P., “Evolutionary
    structural optimization for problems with stiffness constraints,”
    Finite Elements in Analysis and Design, Vol. 21, pp. 239−251
    (1996).
    [26] Zhu, B. F., Li, Z. M., and Zhang, B. C., Principle and applications of
    structural optimization, Waterpower Publisher, Beijing, (1984).
    [27] Samuel, L. Lipson and Larry, B. Gwin, “The complex method
    applied to optimal truss configuration,” Computers and Structures
    Vol. 7, pp. 461−468 (1977).
    [28] Pedersen, P., “Optimal joint positions for space trusses,” J. Struct.
    Div. ASCE, 99(ST10), pp. 2459−2477 (1973).
    [29] Arora, J. S., Introduction to optimum design, McGraw−Hill, (1989).
    [30] 莊玟珊,「PSO-SA 混合搜尋法與其他結構最佳化設計之應用」,
    碩士論文,國立中央大學土木工程研究所,中壢(2007)。

    QR CODE
    :::