| 研究生: |
陳偉志 Wei-Chih Chen |
|---|---|
| 論文名稱: |
全通網路相位偏移器之設計與製作 Design and Fabrication of Phase Shifters Based on All-Pass Networks |
| 指導教授: |
傅家相
Jia-Shiang Fu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 可變電容 、鐵電材料 、相位偏移器 、全通網路 |
| 外文關鍵詞: | Varactor, Ferroelectric, Phase Shifter, All-Pass Network |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用全通網路架構作為基礎來實現數位式與類比式相位偏移器。在第二章中,我們推導出數位式全通網路相位偏移器的設計公式,並成功地使用穩懋0.15-μm砷化鎵假性高速電子移動場效電晶體製程實現一5.8 GHz 90°相位偏移器晶片。其在設計頻率5.8 GHz 下的量測結果顯示,當電晶體在開與關的狀態下(電晶體閘極偏壓分別為0 V 與−2 V),其插入損耗分別小於1.9 dB 與0.8 dB,而輸入與輸出返回損耗則 大於15 dB,相位偏移量可達88°,與設計目標90°相當接近。
第三章中我們分析了類比式全通網路相位偏移器,並推導出其設計公式。而為了實現類比式的相位偏移器,我們發展了鐵電可變電容製程。鐵電可變電容中的鐵電薄膜是使用脈衝雷射沉積技術來製作。製作出的可變電容在4 V 偏壓下可達到2:1 的可調度,其於1.8 GHz 時的品質因子大於40。
In this thesis, digital and analog phase shifters are designed based on all-pass networks.
In Chapter 2, the design equations for digital all-pass phase shifters are derived. Based on the equations, we successfully implement a 5.8-GHz 90°digital phase shifter chip using WIN 0.15-μm GaAs pHEMT process. The measurement results at 5.8 GHz show that, when the switch is switched to ON and OFF-states (gate terminals of the transistors are biased at 0 V and −2 V, respectively), the insertion loss of the circuit is less than 1.9 dB and 0.8 dB, respectively, and both the input and output return losses are greater 15 dB. The measured phase shift is 88°, which is close to the target phase shift of 90°.
In Chapter 3, we analyze analog phase shifters based on all-pass networks, and derive the design equations. In order to implement the analog phase shifter, we develop
ferroelectric variable capacitor (varactor) process. The ferroelectric thin films used in the varactors are fabricated using pulsed laser deposition (PLD) technique. The fabricated ferroelectric varactors can achieve a 2:1 tunability under a bias voltage of 4 V, and possess a
quality factor greater 40 at 1.8 GHz.
[1] F. Ellinger, U. Mayer, M. Wickert, N. Joram, J. Wagner, R. Eickhoff, I. Santamaria, C.
Scheytt and R. Kraemer, “Integrated adjustable phase shifters,” IEEE Micrwave Magazine, vol. 11, no. 97, pp. 97–108, Oct. 2010.
[2] F. Ellinger, U. Jörges, U. Mayer, and R. Eickhoff, “Analysis and compensation of phase variations versus gain in amplifiers verified by SiGe HBT cascode RFIC,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 8, pp. 1885–1894, Aug. 2009.
[3] U. Mayer, F. Ellinger, and R. Eickhoff, “Analysis and reduction of phase variations of variable gain amplifiers verified by CMOS implementation at C-Band,” IET J. Circuits, Devices Syst., vol. 4, pp. 433–439, Sep. 2010.
[4] F. Ellinger, Radio Frequency Integrated Circuits and Technologies, 2nd ed. Heidelberg, Germany: Springer-Verlag, 2008.
[5] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective type phase shifter MMIC for C-band using a lumped element coupler,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[6] D. Kim, Y. Choi, M. G. Allen, J. S. Kenney, and David Kiesling, “A Wide-Band reflection-type phase shifter at S-Band using BST coated substrate,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 12, pp. 2903–2909, Dec. 2002.
[7] J. S. Hayden and G. M. Rebeiz, “Very low-loss distributed X-Band and Ka-Band MEMS phase shifters using Metal–Air–Metal capacitors,” IEEE Trans. Microwave
Theory Tech., vol. 51, no. 1, pp. 309–314, Jan. 2003.
[8] A. S. Nagra and R. A. York, “Distributed analog phase shifters with low insertion loss, ” IEEE Trans. Microwave Theory Tech., vol. 47, no. 9, pp. 1705–1711, Sep. 1999.
[9] J. S. Hayden and G. M. Rebeiz, “2-bit MEMS distributed X-band phase shifters,” IEEE Micro. Wireless Compon. Lett., vol. 10, no. 12, pp. 540–542, Nov. 2000.
[10] D. Adler and R.Popovich, “Broadband switch-bit phase shifter using all-pass networks,” IEEE MTT-S Int. Microwave Symposium, vol. 1, pp. 265–268, Apr. 1991.
[11] C. F Campbell and S. A. Brown, “A compact 5-bit phase shifter MMIC For K- band satellite communication systems,” IEEE Trans. Microwave Theory Tech., vol. 48, no.
12, pp. 2652–2656, Dec. 2000.
[12] M. Hangai, M. Hieda, N. Yunoue, Y. Sasaki, and M. Miyazaki, “S- and C-Band ultra-compact phase shifters based on all-pass network,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 1, pp. 41–47, Jan. 2010.
[13] D. W. Kang1, H. Lee, K. H. Lee, S. I. Jeon, and S. Hong1, “Design of a phase shifter with improved bandwidth using embedded series-shunt switches,” Microwave Conference, 2005 European, vol. 2, Oct. 2005.
[14] L.-Y. V. Chen, R. Forsel, A. H. Cardona, T. C. Watson, and R. York, “Compact analog phase shifters using thin-film (Ba,Sr)TiO3 varactors,” IEEE MTT-S Int. Microwave Symposium, pp. 667–670, Jun. 2007.
[15] J. -S. Kenney, Y. K. Yoon, M. Ahn, and M. G. Allen, “Low-voltage ferroelectric phase shifters from L- to C-Band and their applications,” IEEE Aerospace Conference, Jun. 2006.
[16] D. M. Pozar, Microwave Engineering, 3rd ed. New York: John Willy & Sons, 2003.
[17] R. Tayrani, M. A. Teshiba, G. M. Sakamoto, Q. Chaudhry, R. Alidio, Y. Kang, I. S. AHmad, T. C. Cisco, and M. Hanuhe, “Broad-band SiGe MMICs for phased-array
radar application,” IEEE Journal of Solid-State Circuits., vol. 38, no. 9, pp. 1462–1470, Sep. 2003.
[18] J.-S. Fu, “Adaptive impedance matching circuits based on ferroelectric and semiconductor varactors,” Ph.D. dissertation, The University of Michigan, 2009.
[19] D. Kim, Y. Choi, M. Ahn, M. G. Allen, J. S. Kenney, and P. Marry, ”2.4 GHz continuously variable ferroelectric phase shifter,” IEEE Micro. Wireless Compon. Lett., vol. 13, no. 10, pp. 434–436, Oct. 2003.
[20] J.-S. Fu, X. A. Zhu, J. D. Phillips, and A. Mortazawi, ” A ferroelectric-based impedance tuner for adaptive matching applications,” IEEE MTT-S Int. Microwave
Symposium, pp. 955–958, Jun. 2008
[21] Z. Zhao, X. Wang, K. Choi, C. Lugo, and A. T. Hunt, ”Ferroelectric phase shifters at 20 and 30 GHz,” IEEE Trans. Microwave Theory Tech., vol. 55, no 2, pp.430–437, Feb. 2007.
[22] S. Gevorgian, Ferroelectrics in Microwave Devices, Circuits and Systems, 1st ed. London: Springer-Verlag, 2009.
[23] S. Yamamichi, A. Yamamichi, D. Park, T.-J. King, and C. Hu, “Impact of time dependent dielectric breakdown and stress-induced leakage current on the Reliability of high dielectric constant (Ba,Sr)TiO3 thin-film capacitors for Gbit-scale DRAM’s,” IEEE Trans. Electron Device, vol. 46, no. 2, pp. 342–347, Feb. 1999.
[24] K. Abe and S. Komatsu, “Ferroelectric properties in epitaxially grown BaxSr1-xTiO3 thin films,” J. Appl. Phys., vol. 77, pp. 6461–6465, 1995.
[25] X. Zhu, “Switchable and tunable ferroelectric thin film radio frequency components,” Ph.D. dissertation, The University of Michigan, 2009.
[26] M. Steer, W. D. Palmer, Multifunctional Adaptive Microwave Circuits System.: SciTech Publishing, 2008.
[27] N. K. Pervez, “Investigation of loss mechanisms in thin film barium strontium titanate capacitors,” Ph.D. dissertation, The University of California Santa Barbara, 2006.