跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何仁揚
Jen-Yang Ho
論文名稱: 基於影像辨識的嵌入式虛擬儀表系統設計
Design of an Embedded Virtual Instrument System based on Image Recognition
指導教授: 陳慶瀚
Ching-Han Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 50
中文關鍵詞: 影像辨識
外文關鍵詞: image recognition
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智慧製造環境需要擷取大量的現場生產資訊,然而在真實的工廠中,仍有許多舊設備沒有具備數位化資料擷取和傳輸的介面,或是無法相容於標準化資料擷取和交換等問題,本研究因而設計一個嵌入式儀表辨識系統,用以自動擷取傳統儀表上的數字、指針與波形,將其轉換為數位資訊,從而解決設備資訊整合的問題。虛擬儀表系統分別對數字、指針和波形從事對應的影像處理和資訊擷取,同時以神經網路辨識數字資訊。我們使用一個基於ARM Cortex-M7核心的極小化硬體資源的嵌入式平台來進行實驗,其中數字、指針、波形辨識的正確性分別達到76.4%、73.68%和64.7%。驗證了此一嵌入式虛擬儀表系統的可用性。


    To facilitate a smart manufacturing environment, considerable on-site production information must be extracted. However, in real factories, many old equipment and devices are not equipped with interfaces to extract and transmit digital data, or have compatibility problems against standardized data extraction and exchange. Therefore, this study designed an embedded instrument identification system to automatically extract digits, pointers, and waveforms on a conventional instrument and digitalize these data to solve the problem of equipment information integration. The virtual instrument system performs corresponding image processing and extracts data on digits, points and waveforms, and recognizes digits by neural network. We used an embedded platform based on ARM Cortex-M7 core with minimized hardware resources. The accuracy rates of the system in identifying digits, pointers, and waveforms reached 76.4%, 73.68%, and 64.7%, respectively. The results verified the feasibility of the proposed embedded virtual instrument system.

    摘要................................................... i Abstract.............................................. ii 誌謝 ................................................ iii 目錄 ................................................. iv 圖目錄 ............................................... vi 表目錄 ............................................. viii 第1章 緒論 ............................................. 1 1.1 研究背景與動機 .................................... 1 1.2 研究目的與論文架構 ................................. 2 第2章 方法回顧 ....................................... 4 2.1 基於機器視覺的低成本瓦斯讀表器 ...................... 4 2.2 基於影像處理的電表自動讀取系統 ...................... 6 2.3 基於水平與垂直二元形態方法的數位電表辨識 ............. 8 2.4 採用數位訊號處理器遠端獲取水表數據 .................. 9 第3章 虛擬儀表系統設計 ................................ 11 3.1 虛擬儀表系統架構 .................................. 11 3.2 影像前處理 ........................................ 12 3.2.1 二值化 ......................................... 12 3.2.2 侵蝕與膨脹 ...................................... 14 3.2.3 數字字元切割 .................................... 15 3.2.4 指針與波形影像切割 .............................. 16 3.3 PNN 數字辨識、指針辨識與波形辨識 ................... 18 第4章 系統整合驗證 ................................... 23 4.1 軟硬體實驗平台 .................................... 23 4.2 虛擬儀表系統 ...................................... 26 4.3 實驗 ............................................. 30 4.4 討論 ............................................. 33 第 5 章 結論與未來工作 ................................ 37 5.1 結論 ............................................. 37 5.2 未來工作 .......................................... 38 參考文獻 .............................................. 39

    [1] Smita Bajaj and Rahul Johari, "Big Data: A Boon or Bane-the Big Question ," 2016 Second International Conference on Computational Intelligence & Communication Technology, pp.106-110, 2016.
    [2] Nancy W. Grady, et al., "Big Data: Challenges, Practices and Technologies," in 2014 IEEE International Conference on Big Data, pp.1-5, 2014.
    [3] Mahdi H. Miraz,Maaruf Ali and Peter S. Excell, "A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT)," in 2015 Internet Technologies and Applications, pp.1-6, 2015.
    [4] Rafiullah Khan, et al., "Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges," in 2012 10th International Conference on Frontiers of Information Technology (FIT), pp. 257-260, 2012.
    [5] M.D. Anto Praveena and Dr. B. Bharathi, "A Survey Paper on Big Data Analytics," in 2017 International Conference on Information Communication and Embedded Systems (ICICES), pp.1-9, 2017.
    [6] Jie Zhan, et al., "Study of the key technologies of electric power big data and its application prospects in smart grid," in 2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp.1-4, 2014.
    [7] Lin Hou, et al., "Overview of data mining and visual analytics towards big data in smart grid," in 2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI) , pp.1-4, 2016.
    [8] 經濟部能源局電力組, "低壓智慧電表推動規劃(智慧電網推動) ," pp.1-22 ,2017.
    [9] Chetna Kaushal and Deepika Koundal, "Big Data Application in Medical Domain," in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS-2017), pp.1-4, 2017.
    [10] Mrs.G.Jayalakshmi and Dr.T.Anurad, "Big Data Technologies for Predicting Epidemics and Enhancing Quality of Human Life, " in 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), pp.1-5, 2017.
    [11] Zhiwei He, et al., "A low-cost direct reading system for gas meter based
    on machine vision," in 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp.1189-1194, 2017.
    [12] Lamiaa A.Elrefaei, et al., "Automatic Electricity Meter Reading Based on Image Processing, “ in 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp.1-5, 2015.
    [13] K. Parthiban and A. M. Palanisamy, "Reading Values in Electrical Meter
    Using Image Processing Techniques, " in 2013 IEEE International Conference on Intelligent Interactive Systems and Assistive Technologies,Coimbatore, pp. 1-6, 2013.
    [14] Atif Anis, et al., "Digital Electric Meter Reading Recognition Based on
    Horizontal and Vertical Binary Pattern, “ in 2017 3rd International Conference on Electrical Information and Communication Technology (EICT), pp. 1-5, 2017.
    [15] Santosh G. Kashid, et al., "Remote Capturing of Water Meter Reading Using
    DSP Processor, “ in 2015 Third International Conference on Image Infonnation Processing, pp. 45-49, 2015.
    [16] John Canny, "A Computational Approach To Edge Detection, " IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp. 679–714, 1986.
    [17] Ching-Han Chen, M.-Y. Lin, and X.-C. Guo, High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things. pp. 48-66, 2017.
    [18] Pierre D. Wellner, “Adaptive Thresholding for the DigitalDesk,” Technical Report EPC-1993-110, pp.1-17, 1993.
    [19] C. Phromlikhit, et al., "Tablet counting machine base on image processing," in 2012 Biomedical Engineering International Conference (BMEiCON), pp. 1-5, 2012.
    [20] N. J. McFarlane and C. P. Schofield, "Segmentation and tracking of piglets in images," Machine vision and applications, vol. 8, pp. 187-193, 1995.
    [21] Donald F. Specht, "Probabilistic Neural Networks," Neural Networks, vol. 3, pp. 109-118, 1990.
    [22] Timothy Masters, Advanced Algorithms for Neural Networks : A C++ Sourcebook, John Wiley & Sons, Inc. 1995.
    [23] R.O.Duda and R.E.Hart, "Use of the Hough Transform to Detect Lines and Curves in Pictures", Communications of the ACM, January 1972, vol. 15, no. 1, pp. 11-15, 1972.

    QR CODE
    :::