跳到主要內容

簡易檢索 / 詳目顯示

研究生: 翁健家
Jian-Jia Weng
論文名稱: 用於空時籬柵碼的非同調重複解碼演算法
Noncoherent Iterative Decoding Algorithm For Space-Time Trellis Codes
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 81
中文關鍵詞: 近似穩態衰退通道訓練碼通道估測非同調檢測空時碼空時籬柵碼超級正交空時籬柵碼
外文關鍵詞: space-time trellis codes, space-time codes, channel estimation, training codes, quasi-static fading channel, noncoherent detection, super-orthogonal space-time trellis codes
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在空時碼的系統中,除了么正空時調變(unitary space-time modulation, USTM) [12]與相差空時調變(differential space-time modulation, DSTM)[13]外,大部分的空時碼都要在通道狀態已知的情況下進行解碼。在[14]中提出了一種適用於無線衰退通道環境下,具有訓練符元(training symbols)之非同調空時區塊碼傳輸架構,此架構的解碼器藉由通道係數的估測值作同調解碼。在此篇論文中,我們針對使用超級正交空時籬柵碼(super-orthogonal space-time trellis codes, SOSTTCs)[10]及其他空時籬柵碼[7]的這種架構,提出一種基於決策回授方式的非同調重複解碼演算法,使能以低複雜度趨近最大可能性(maximum likelihood, ML)非同調解碼的錯誤效能。


    Most of the space-time codes have to decode with channel state information except for Unitary Space-Time Modulation(USTM)[12] and Differential Space-Time Modulation(DSTM)[13] system. A noncoherent space-time block code transmission scheme with training symbols, which applies the estimated channel coefficients to perform coherent decoding, was proposed in [14] to work under wireless fading channels. In this thesis, we present a noncoherent iterative decoding algorithm in decision-feedback fashion under the framework of Super-Orthogonal Space-Time Trellis Codes(SOTTCs)[10] and some space-time trellis codes[7] to approach the error performance of a Maximum Likelihood(ML) noncoherent decoder with low complexity.

    第一章 緒論 1.1 空時碼的概念 1 1.2 空時碼之系統模型 2 1.3 同調與非同調檢測 2 1.4 研究動機 3 第二章 空時碼之回顧 2.1 空時區塊碼 5 2.2 空時籬柵碼之回顧 7 2.2.1空時籬柵碼 8 2.2.2籬柵編碼調變串接空時區塊碼 10 2.2.3超級正交空時籬柵碼 11 2.3 具通道估測之空時碼 14 2.3.1多天線傳輸系統之通道估測 15 2.3.2能量配置 16 2.3.3估測符元 18 2.3.4使用具通道估測之空時籬柵碼效能模擬 18 第三章 修正通道估測之空時籬柵碼解碼演算法 3.1 前言 22 3.2 傳輸訊號架構 22 3.3 廣義可能性比例測試偵測器 23 3.4 基於通道量化的非同調解碼演算法 25 3.4.1演算法簡介 25 3.4.2模擬結果與討論 27 3.5 決策回授通道估測解碼演算法 32 3.5.1演算法簡介 32 3.5.2模擬結果與討論 33 第四章 非同調重複空時籬柵碼解碼演算法 4.1 前言 39 4.2 空時籬柵碼的非同調最大可能性解碼 39 4.2.1演算法簡介 39 4.2.2非同調災難碼 40 4.3 非同調重複空時籬柵碼解碼演算法 41 4.4 模擬結果與討論 43 4.5 最佳能量配置 49 4.6 ?合比較與分析 56 第五章 結論 64 參考文獻 65 中英對照表 67

    【1】 G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, 1998, pp. 311-335
    【2】 E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, Nov./Dec. 1999, pp. 585-595.
    【3】 V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, Mar. 1998.
    【4】 S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE Journal Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1999.
    【5】 V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999.
    【6】 Z. Chen, B. Vucetic, J. Yuan and K. Lo, “Space-time trellis coded modulation with three and four transmit antennas on slow fading channels,” IEEE Commun. Letters, vol. 6, no. 2, pp. 67-69, Feb. 2002.
    【7】 Y. Gong and K. B. Letaief, “Concatenated space-time block coding with trellis-coded modulation in fading channels,” IEEE Trans. Wireless Commun., vol. 1, pp. 580-590, Oct. 2002.
    【8】 G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 55-66, Jan. 1982.
    【9】 S. M. Alamouti, V. Tarokh and P. Poon, “Trellis coded modulation and transmit diversity: Design criterion and performance evaluation,” in Proc. IEEE ICUPC’98, Oct. 1998, pp. 703-707.
    【10】 H. Jafarkhani and N. Seshadri, “Super-orthogonal space-time trellis codes,” IEEE Trans. Inform. Theory, vol. 49, no. 4, Apr. 2003.
    【11】 B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?,” IEEE Trans. Inform. Theory, vol. 49, no. 4, pp. 951-963, Apr. 2003.
    【12】 B. M. Hchwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communication in Rayleigth flat fading,” IEEE Trans. Inform. Theory, vol.46, pp.543-564, Mar. 2000.
    【13】 B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inform. Theory, vol.46, no. 7, pp. 2567-2578, Nov. 2000.
    【14】 P. Dayal, M. Brehler, M. K. Varanasi, “Leveraging Coherent Space-Time Codes for Noncoherent Communication Via Training,” IEEE Trans. Inform. Theory, vol.50, pp.2058-2080, Sep. 2004.
    【15】 D. Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inform. Theory, vol. 48, no.3, pp. 651-668, Mar. 2002.
    【16】 R. R. Chen, R. Koetter and U. Madhow, “Joint noncoherent demodulation and decoding for the block fading channel: A practical framework for approaching Shannon capacity,” IEEE Trans. Commun, vol. 51, no. 10, pp. 1676-1689, Oct. 2003.
    【17】 D. Raphaeli, “Noncoherent coded modulation,” IEEE Trans. Commun., vol. 44, pp. 172-183, Feb. 1996.
    【18】 H. Boelcskei, D. Gesbert, C. Papadias and A. J. van der Veen “Space-Time Wireless Systems: From Array Processing to MIMO Communications,” Cambridge University Press, 2006.
    【19】 R. Y. Wei, “Noncoherent space-time block coded modulation,” in Proc. IEEE Int. Conf. on Commun. (ICC), Paris, June 2004.

    QR CODE
    :::