| 研究生: |
汪政廷 Cheng-Ting Wang |
|---|---|
| 論文名稱: |
探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌 Probing the structures underneath the surface of θ-Al2O3/NiAl(100) and Au-Pt bimetallic clusters supported on the θ-Al2O3/NiAl(100) |
| 指導教授: |
羅夢凡
Meng-Fan Luo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 氧化鋁 、顆粒 、掃描穿隧顯微鏡 、奈米 、金 、鉑 、表面物理 |
| 外文關鍵詞: | NiAl, nano, scanning tunneling microscope, STM, cluster, nanocluster, surface science, Al2O3, Pt, Au |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們用掃描穿隧顯微鏡(STM)探測θ-Al2O3/NiAl(100)底層的結構
以及鍍在其上的Au-Pt雙金屬團簇。在不同的設定時,電子會從針尖
穿隧到不同的氧化層並且顯示表面之下的結構。這可以藉由相對能階和樣品的空軌域來理解。利用氣相沈積法,我們在300 K 溫度下,將金以及白金原子連續的鍍上。後鍍的金屬加入已存在的團簇的比例會隨著鍍量增加。在0.06 ML Pt/θ-Al2O3/NiAl(100)表面上,後鍍上的金會加入已存在的團簇的比率從 43 % 降到 21 %。大部分的金形成純的單金屬團簇。相比之下,在0.22 ML Pt/θ-Al2O3/NiAl(100)表面上,此比率會從 52 % 上升到 71 %。在Pt/Au/θ-Al2O3/NiAl(100)表面上,後鍍上的0.17 ML Pt會加入先鍍上的0.13 ML金團簇的比率是 58 %。加熱到450 K,鍍量從1 ML降到0.3 ML。加熱到700 K,鍍量是0.2 ML。大部分的金屬擴散到基底。
We have probed the structures beneath the surface of thin film θ-Al2O3/NiAl(100) and Au-Pt bimetallic clusters on θ-Al2O3/NiAl(100) with a scanning tunneling microscope (STM).
With different settings, electrons tunnel from tip to different oxide layers and show the morphology of the structures beneath the surface. It is understood by the related energy level and the unoccupied states of the sample.
On θ-Al2O3/NiAl(100), Au and Pt atoms are sequentially vapor deposited at 300 K. The ratio for the later deposited metal joining existing clusters depends on the coverage. In the presence of 0.06 ML Pt on θ-Al2O3/NiAl(100) surface, the ratio for the later deposited Au joining the existing clusters is decreased from 43 % to 21 %. Most of the Au atoms form new pure clusters; in contrast, the ratio is increased on 0.22 ML Pt/θ-Al2O3/NiAl(100) surface from 52 % to 71 %. For Pt/Au/θ-Al2O3/NiAl(100), the ratio for the later deposited Pt (0.17 ML) joining existing Au clusters (0.13 ML) is 58 %. After annealing to 450 K, the coverage decreases from 1 ML to 0.3 ML. After annealing to 700 K, the coverage is 0.2 ML. Most of the metals diffuse to the substrate.
Reference:
Chapter 1 :
[1] Sinfelt, J. H. Bimetallic Catalysts: DiscoVeries, Concepts and Applications; Wiley: New York, 1994.
[2] Campbell, C. Annu. ReV. Phys. Chem., 41 (1990) 775.
[3] Rodriguez, J. A.; Campbell, C. T.; Goodman, D. W. Surf. Sci. 377 (1994) 307-309.
[4] Rodriguez, J. A. Surf. Sci. Rep. 24 (1996) 223.
[5] Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C.-J. Langmuir 22 (2006) 2892.
[6] Zeng, J.; Yang, J.; Lee, J. Y.; Zhou, W. J. Phys. Chem. B 110 (2006) 24606.
[7] Bus, E.; Bokhoven, J. A. v. J. Phys. Chem. C, 111 ( 2007) 9761.
[8] Liu, H. B.; Pal, U.; Ascencio, J. A. J. Phys. Chem. C 112 (2008) 19173.
[9] N. Nilius, M. Kulawik, H. P. Rust, H. J. Freund, Phys. Rev. B 69 (2004) 121401.
Chapter 2:
[1] D. A. King, D. P. Woodruff (Eds.), The Chemical Physics of Solid Surface, Growth and Properties of Ultrathin Epitaxial Layers, Vol. 8 (Elsevier, Amsterdam, 1997).
[2] R. P. Blum, H. Niehus, Appl. Phys. A 66 (1998) S529–S533.
[3] R. P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 366 (1996) 107.
[4] R. Franchy, Surf. Sci. Reports 38 (2000) 195.
[5] P. Gassmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95.
[6] N. Frémy, V. Mauruce, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
[7] D.R. Mullins, S.H. Overbury, Surf. Sci. 199 (1988) 141.
[8] R.M. Jaeger, K. Kuhlenbeck, H.J. Freund, M. Wuttig, W. Hoffmann, R. Franchy, H. Ibach, Surf. Sci. 259 (1991) 235.
[9] M. Bäumer, H. J. Freund, Progress in Surf. Sci. 61 (1999) 127.
[10] M. F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C. Kuo, Nanotechnology 17 (2006) 360.
[11] V. Maurice, N. Fre’my, P. Marcus, Surf. Sci. 581 (2005) 88.
[12] K. H. Hansen, T. Worren, E. Lægsgaard, F. Besenbacher, I. Stensgaard, Surf. Sci. 475 (2001) 96.
[13] S. Andersson, P. Bruhwiler, A. Sandell, M. Frank, J. Libuda, A. Giertz, B. Brena, A. Maxwell, H-J. Freund, N. Martensson, Surf. Sci. 442 (1999) L964.
[14] Pin-Jui Hsu, Chii-Bin Wu, Hong-Yu Yen, Sheng-Syun Wong, Wen-Chin Lin, Minn-Tsong Lin, Appl. Phys. Lett. 93 (2008) 143104.
[15] N. Nilius, M. Kulawik, H. P. Rust, H. J. Freund, Phys. Rev. B 69 (2004) 121401.
[16] S. Degen, A. Krupski 1, M. Kralj, A. Langner, C. Becker *, M. Sokolowski, K. Wandelt, Surf. Sci. 576 (2005) L57.
[17] J. A. Gardener, G. A. D. Briggs, M. R. Castell, Phys. Rev. B 80 (2009) 235434.
[18] J. Libuda, F. Winkelmann, M. Bäumer, H. J. Freund, T. Bertrams, H. Neddermeyer, K. Müller, Surf. Sci. 318 (1994) 61.
[19] M. C. Gallagher, M. S. Fyeld, J. P. Cowin, S. A. Joyce, Surf. Sci. 339 (1995) L909.
[20] T. Bertrams, A. Brodde, H. Neddermeyer, J. Vac. Sci. Technol. B 12 (1994) 2122.
[21] S. M. Lu, H. T. Shih, C. L. Jiang, W. B. Su, C. S. Chang, T.T. Tsong, Chinese J. Phys. 44/4 (2006) 309.
[22] A. Lehnert, A. Krupski, S. Degen, K. Franke, R. Decker, S. Rusponi, M. Kralj, C. Becker, H. Brune, K. Wandelt, Surf. Sci. 600 (2006) 1804.
[23] M. Born and K. Huang, Dynamical Theory of Crystal Lattice. Oxford University Press, (1954).
[24] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[25] Siqi Shi, Shingo Tanaka, Masanori Kohyama, J. Am. Ceram. Soc. 90 [8] (2007) 2429.
[26] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, Surf. Sci. 602 (2008) 241.
[27] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Surf. Sci. 600 (2006) 4978.
[28] Liz-Marza´n, L. M.; Philipse, A. P. J. Phys. Chem. 99 (1995) 15120.
[29] Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J.-L.; Delcourt, M.-O. New J. Chem. 22 (1998) 1239.
[30] Ge, Q.; Song, C.; Wang, L. Comput. Mater. Sci. 35 (2006) 247.
[31] H. B. Liu, U. Pal, J. A. Ascencio, J. Phys. Chem. C 112 (2008) 19173.
Chapter 3:
[1] Springer-Verlag, Surface and Interfaces of Solids.
[2] A. Chambers, R. K. Fitch, B. S. Halliday, Basic Vacuum Technology.
[3] Hans Lüth, Surface and Interfaces of Solid Materials.
[4] 真空技術與應用, 行政院國家科學委員會精密儀器發展中心出版.
[5] G. Binnig, H. Rohrer, E. Weibel, Appl.Phys. Lett. 40 (1982) 178.
[6] G. Binnig, H. Rohrer, E. Weibel, Phys. Rev. Lett. 50 (1983) 120.
[7] R. Eisberg, R. Resnick, QUANTUM PHYSICS OF ATOMS, MOLECULES, SOLIDS, NUCLEI, AND PARTICELS.
[8] B. J. Behm, N.Garcia, H. Rohrer, Scanning Tunneling Microscopy and Related Methods.
[9] R. H. Fowler, L. W. Nordheim, Proc. Roy. Soc. A 119 (1928) 173.
[10] Chen C. J., Introduction to Scanning Tunneling Microscopy (1993 New York: Oxford University Press).
[11] User’s guide of RHK-UHV 300.
[12] I. Ekvall, E. wahlstrom, D. Claesson, H. Olin, E. Olsson, Meas. Sci. Technol. 10 (1999) 11.
[13] R.P. Blum, H. Niehus, Appl. Phys. A 66 (1998) S529–S533.
[14] R.P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176.
[15] J. Me´ndez, H. Niehus, Appl. Surf. Sci. 142 (1999) 152.
[16] P. Gaussmann, R. Franchy, H. Ibach, Surf. Sci. 319 (1994) 95.
[17] N. Frémy, V. Mauruce, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
[18] M.S. Zei, C.S. Lin, W.H. Wen, C.I. Chiang, M.F. Luo, Surf. Sci. 600 (2006) 1942.
[19] M.F. Luo, C.I. Chiang, H.W. Shiu, S.D. Sartale, C.C. Kuo, Nanotechnology
17 (2006) 360.
Chapter 4:
[1] N. Frémy, V. Mauruce, P. Marcus, J. Am. Ceram. Soc. 86 (2003) 669.
[2] R.P. Blum, H. Niehus, Appl. Phys. A 66 (1998) S529–S533.
[3] R.P. Blum, D. Ahlbehrendt, H. Niehus, Surf. Sci. 396 (1998) 176-188.
[4] J. Me´ndez, H. Niehus, Appl. Surf. Sci. 142 (1999) 152–158.
[5] M. Baumer, H.J. Freund, Prog. Surf. Sci. 61 (1999) 127-198.
[6] J. Libuda, F. Winkelmann, M. Bäumer, H.J. Freund, T. Bertrams, H. Neddermeyer, K. Müller, Surf. Sci. 318 (1994) 61.
[7] M.C. Gallagher, M.S. Fy®eld, J.P. Cowin, S.A. Joyce, Surf. Sci. 339 (1995) L909.
[8] Th. Bertrams, A. Brodde, H. Neddermeyer, J. Vac. Sci. Technol. B 12 (1994) 2122.
[9] S. M. Lu, H. T. Shih, C. L. Jiang, W. B. Su, C. S. Chang, T.T. Tsong, Chinese J. Phys. 44/4 (2006) 309.
[10] Pin-Jui Hsu, Chii-Bin Wu, Hong-Yu Yen, Sheng-Syun Wong, Wen-Chin Lin, Minn-Tsong Lin, Appl. Phys. Lett. 93 (2008) 143104.
[11] N. Nilius, M. Kulawik, H.P. Rust, H.J. Freund, Phys. Rev. B 69 (2004) 121401.
[12] M.F. Luo, H.W. Shiu, M.H. Ten, S.D. Sartale, C.I. Chiang, Y.C. Lin, Y.J. Hsu, Surf. Sci. 602 (2008) 241–248.
[13] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Surf. Sci. 600 (2006) 4978–4985.
[14] H. B. Liu, U. Pal, A. Ascencio, J. Phys. Chem. C 112 (2008) 19173-19177