| 研究生: |
林敬智 Ching-Chih Lin |
|---|---|
| 論文名稱: |
下水污泥灰渣應用於銅離子去除之初步探討 Use of Sewage Sludge Ash in removing Copper ion from aqueous solution |
| 指導教授: |
曾迪華
Dyi-Hwa Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 下水污泥灰渣 、吸附 、銅離子 、陽離子交換容量 |
| 外文關鍵詞: | sewage sludge ash, adsorption, copper ion |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經由以上實驗結果發現,下水污泥灰渣表面具孔隙結構,其化學組成以矽、鋁及鐵等氧化物為其主要構成(約佔70%)。在表面特性方面,民生廠與八里廠污泥灰渣,其比表面積分別17.51與10.66m2/g,而pHzpc則介於3.1∼3.4,有利於去除水中之陽離子。陽離子交換容量約為24∼25meq/100g,可視為一吸附性質頗佳之灰渣材料。根據恆溫吸附實驗結果,民生廠與八里廠污泥灰渣,對銅離子之吸附速率常數分別為0.004與0.005min-1,而在灰渣劑量10g/L、銅離子初始濃度50mg/L、溶液pH值4.0、離子強度0.01N及溫度30℃條件下,其對銅離子之最大吸附容量,分別可達2.79mg/g與3.04mg/g。且在低離子強度及高反應溫度(40℃)條件下,污泥灰渣吸附銅離子,呈現較高的去除效率。唯污泥灰渣在溶液pH值較低的情況下,銅離子脫附百分率有增加之趨勢。此外污泥灰渣對銅離子去除之機制,應為污泥灰渣表面提供可吸附或可交換之位址,以靜電吸引與離子交換等方式,去除溶液中銅離子。而改變備製條件發現,污泥灰渣經水洗,以及在較低溫度(700℃)下焚化,具有較高的銅離子去除能力,推測其原因,可能為水洗過程中可將灰渣表面之雜質洗去,故灰渣可提供更多可吸附或可交換之位址;相反地,提高污泥焚化溫度,則由於灰渣顆粒與顆粒間,發生局部燒結現象,使得污泥灰渣之比表面積與陽離子交換容量均降低,故不利於銅離子之去除。
According to test results, the SSA samples in this study are found porous and irregular-shaped particles with significant surface area. The predominant compositions of SSA include silicon, aluminum, and iron oxides. The overall weight content of these three compositions in SSA is approximately 70%. In addition, the BET specific surface area of SSA is primarily between 17.51 and 10.66 m2/g. The pH value at zero-point-of-charge (pHzpc) of SSA is primarily between 3.1 and 3.4. The cation exchange capacity (CEC) of SSA is primarily between 24 and 25 meq/100g. The specific surface area, pHzpc, and CEC are three favorable properties of SSA for copper ion removal. According to kinetic isotherm tests, the adsorption rate constant of Min-Shen and Pa-Li WWTP SSA is 0.004 and 0.005 min-1 respectively. According to equilibrium isotherm tests, the specific adsorption capacity of Min-Shen and Pa-Li WWTP SSA is 2.79 and 3.04 mg/g respectively. The conditions of above testes include 10 g/L of SSA dosage, 50 mg/L of initial copper concentration, 0.01 N of solution ion strength, 4.0 of initial pH value, and 30℃ of ambient temperature. The above test results reveal that the copper ions are removed by mechanism of electrostatic attraction and cation ion exchange occurred in SSA surface. Regarding the effect of SSA preparation, this study found that the water-washed ash and the ash incinerated at 700℃ exhibit higher copper adsorption capacity than those ashes prepared in different conditions. This result reveals that the water washing can remove impurities on SSA surface and provides more available sites for copper ion. On the other hand, the high incineration temperature results in partial sintering between SSA particles. Both of the specific surface area and CEC of SSA decreases when incineration temperature increases. For this reason, SSA incinerated at 700℃ exhibits higher copper removal capability than that of SSA incinerated at 800 and 900℃.
Alleman, J. E. and N. A. Berman, “Constructive Sludge Management: Biobrick,” ASCE Journal of Environmental Engineering, Vol.110, No.2, pp.301-311 (1984).
Ayala, J., F. Blanco, P. Garcia, P. Rodriguez and J. Sancho,” Asturian Fly Ash as a Heavy Metals Removal Material,” Fuel, Vol.77, No.11, pp.1147-1154 (1998).
Baraj, B., M. Martinez, A. Sastre and M. Aquilar, “Simultaneous Determination of Cr(Ⅲ), Fe(Ⅲ), Cu(Ⅱ) and Pb(Ⅱ) as UV-Absorbing EDTA Complexes by Capillary Zone Electrophoresis,” Journal of Chromatography A, Vol.6, pp.103-111 (1995).
Bhattacharya A. K. and C. Venkobachar, ”Removal of Cadmium(Ⅱ) by Low Cost Adsorbents,” ASCE Journal of Environmental Engineering, Vol.110, No.1, pp.110-122 (1984).
Bhatty, J. I. and K. J. Reid, “Compressive Strength of Municipal Sludge Ash Mortars,” ACI Materials Journal, Vol.86, No.4, pp.394-400 (1989)
Bernd, W. and F. S. Carl, ”Utilization of Sewage Sludge Ash in the Brick and Tile Industry,” Water Science and Technology, Vol.36, No.11, pp.251-258 (1997).
Bailey, S. E., T. J. Olin, R. M. Bricka and D. D. Adrin, ”A Review of Potentially Low-Cost Sorbents for Heavy Metals,” Water Research, Vol.33, No.11, pp.2469-2479 (1999).
Carl, S. K. and J. D. Rimstidt, “Mineralogy and Surface Properties of Municipal Solid Waste Ash,” Environmental Science and Technology, Vol.27, pp.652-660 (1993)
Dimitrova, S. V., “Metal Sorption on Blast-Furnace Slag,” Water Research, Vol.30, No.1, pp.228-232 (1996).
Dimitrova, S. V. and D. R. Mehanjiev, “Lead Removal from Aqueous Solutions by Granulated Blast-Furnace Slag,” Water Research, Vol.32, No.11, pp.3289-3292 (1998).
Dimitrova, S. V. and D. R. Mehanjiev, “Interaction of Blast-Furnace Slag with Heavy Metal Ions in Water Solutions,” Water Research, Vol.34, No.6, pp.1957-1961 (2000).
Elliott, H. A. and C. P. Huang, ” Adsorption Characteristics of Some Cu(Ⅱ) Complexes on Aluminosilicates,” Water Research, Vol.15, pp.849-855 (1981).
Elliott, H. A. and C. P. Huang, “Factors Affecting the Adsorption of Complexed Heavy Metals on Hydrous Al2O3,” Water Science and Technology, Vol.17, No.4, pp.1017-1028 (1984).
Gupta, G. and N. Torres, ”Use of Fly Ash in Reducing Toxicity of and Heavy Metals in Wastewater Effluent,” Journal of Hazardous Materials, Vol.57, pp.243-248 (1998).
Gupta, V. K., ”Equilibrium Uptake, Sorption Dynamics, Process- Development, and Column Operations for the Removal of Copper and Nickel from Aqueous Solution and Wastewater Using Activated Slag, a Low-Cost Adsorbent,” Industrial and Engineering Chemistry Research, Vol.37, No.1, pp.192-202 (1998).
Gupta, V. K. and I. Ali,” Utilization of Bagasse Fly Ash (A Sugar Industry Waste) for the Removal of Copper and Zinc from Wastewater,” Separation and Purification Technology, Vol.18, pp.131-140 (2000).
Hiraoka, M., “Advanced Sludge Thermal Processes in Japan,” Water Science and Technology, Vol.30, No.8, pp.139-148 (1994).
Hèquet, V., P. Ricou, I. Lecuyer and P. L. Cloirec, ”Removal of Cu2+ and Zn2+ in Aqueous Solutions by Sorption onto Mixed Fly Ash,” Fuel, Vol.80, pp.851-856 (2001).
Huang, C. P. and E. A. Rhoads, ”Adsorption of Zn(Ⅱ) onto Hydrous Aluminosilicates,” Journal of Colloid and Interface Science, Vol.131, No.2, pp.289-306 (1989).
Juang, R. S., F. C. Wu and R. L. Tseng,” Adsorption Removal of Copper(II) Using Chitosan from Simulated Ring Solutions Containing Chelating Agents,” Water Research, Vol.33, No.10, pp.2403-2409 (1999).
Khanbilvardi, R. and Afahari, S., “Sludge Ash as Fine Aggregate for Concrete Mix,” ASCE Journal of Environmental Engineering, Vol.121, No.9, pp.633-638 (1994).
Lin, C. F. and H. C. His, “Resource Recovery of Waste Fly Ash: Synthesis of Zeolite-like Materials,” Environmental Science and Technology, Vol.29, No.4, pp.1109-1117 (1995).
López, A., C. Pérez and F. A. López , ”Sorption of Heavy Metals on Blast Furnace Sludge,” Water Research, Vol.32, No.4, pp.989-996(1998).
Monzo, J., J. Paya, M. V. Borrachero and A. Corcoles, “Use of Sewage Ash (SSA) - Cement Admixtures in Mortars,” Cement and Concrete Research, Vol.26, No.9, pp.1389-1398 (1996).
Normura, T. and T. Kanazawa, “Adsorption of Metal-Inos from Solution onto a Piezoelectric Quartz Crystal,” Analytica Chimica Acta, Vol.245, No.1, pp.71-76 (1991).
Panday, K. K., G. Prasad and V. N. Singh, ”Removal of Cr(Ⅵ) from Aqueous Solutions by Adsorption on Fly Ash-Wollastonite,” Journal Chemical Technology and Biotechnology, Vol.34, pp.367-374 (1984).
Panday, K. K. , G. Prasad and V. N. Singh, ”Copper(Ⅱ) Removal from Aqueous Solutions by the Fly Ash,” Water Research, Vol.19, No.7, pp.869-873 (1985).
Sen, A. K. and A. K. De, ”Adsorption of Mercury(Ⅱ) by Coal Fly Ash,” Water Research, Vol.21, No.8, pp.885-888 (1987).
Srivastava, S. K., V. K. Gupta and D. Mohan,” Removal of Lead and Chromium by Activated Slag- A Blast-Furnace Waste,” ASCE Journal of Environmental Engineering, Vol.123, No.5, pp.461-468 (1997).
Steenbruggen, G. and G. G. Hollman, “Synthesis of Zeolites from Fly Ash and the Properties of the Zeolite Products,” Journal of Geochemical Exploration, Vol.62, No.1, pp.305-309 (1998).
Stumm W., “Chemistry of the Solid-Water Interface”, John Wiley & Sons, New York, USA (1992).
Stumm W. and J. J. Morgan, “Aquatic Chemistruy”, John Wiley & Sons, New York, USA (1989).
Tay, J. H., “Sludge Ash as Filler for Portland Cement Concrete,” ASCE Journal of Environmental Engineering, Vol.113, No.2, pp.345-351 (1987).
Tay, J. H. and W. K. Yip, “Sludge Ash as Lightweight Concrete Material,” ASCE Journal of Environmental Engineering, Vol.115, No.1, pp.56-64 (1989).
Tay, J. H. and K. Y. Show, “The Use of Lime-Blended Sludge for Production of Cementitious Material,” Water Environment Research, Vol.64, No.1, pp.6-12 (1992).
Takana, K. and K. Sato, “Recent Status of Sewage Sludge Treatment, Disposal, and Utilization in Japan,” 第七屆下水道技術研討會論文集, pp.1-16 (1996).
Weng, C. H. and C. P. Huang, ”Treatment of Metal Industrial Wastewater by Fly Ash and Cement Fixation,” ASCE Journal of Environmental Engineering, Vol.120, No.6, pp.1470-1487 (1994).
Yang, C. C., and T. Y. Yang, ”Thermal Behavior and Adsorption Properties of Zeolites Synthesized from Municipal Incinerator Fly Ashs,” Proceeding of International Conference on Cleaner Production and Sustainable Development’99, Taipei, Taiwan, pp.234-244 (1999).
Zhao, X. S., G. O. Lu and H. Y. Zhu, ”Effects of ageing and seeding on the formation of zeolite Y from Coal Fly Ash,” Journal of Porous Materials, Vol.4, No.4, pp.251-254 (1997)
王鯤生、張毓舜、林凱隆、黃尊謙,「下水污泥焚化灰渣燒製輕質骨材之研究」,第十四屆廢棄物處理技術研討會論文集,台中,第5-45∼5-52頁(1999)。
翁誌煌、蔡鑫位「生物污泥灰對染料(new coccine)的吸附特性研究」,第二十五屆廢水處理研討會論文集,高雄,第794∼801頁(2000)。
何寬宏,「垃圾焚化底渣吸附鉻酸離子之可行性研究」,碩士論文,國立成功大學環境工程研究所,台南,(2000)。
林介明,「以飛灰去除水中銅、鋅、鉛、鉻之研究」,碩士論文,國立中興大學環境工程研究所,台中,(1998)。
林建榮,「燃煤飛灰去除水中污染物行為之研究」,博士論文,國立成功大學環境工程研究所,台南,(2001)。
張毓舜,「下水污泥焚化灰渣燒結特性之研究」,碩士論文,國立中央大學環境工程研究所,中壢,(1998)。
余岳豐,「下水污泥焚化灰渣燒成輕質骨材特性之研究」,碩士論文,國立中央大學環境工程研究所,中壢,(1998)。
潘時正、曾迪華、李釗,「下水污泥灰渣特性及再利用於水泥材料之評估」,國立中央大學環境工程學刊,第5期,第115-129頁(1998)。
孫嘉福、李孫榮、楊英賢、廖文彬,「燃煤灰渣去除水中鋅離子可行性之研究」,第四屆海峽兩岸環境保護學術研討會論文集,中壢,第835-842頁(1996)。
楊金鐘、黃靜雯,「垃圾焚化飛灰/反應產物合成沸石之最佳操作條件探討」,第十四屆廢棄物處理技術研討會論文集,台中,第1-150∼1-157頁(1999)。
駱尚廉、鄭宏德、林正芳、李達源,「氧化鐵覆膜濾料對重金屬吸附之研究」,中國土木水利工程學刊,第6卷,第1期,第101-110頁(1994)。
夏聰惠、駱尚廉、林正芳,「非結晶性氧化鐵對Cr(VI)之吸附研究」,中國土木水利工程學刊,第3卷,第1期,第88-96頁 (1991)。
賴進興、駱尚廉、夏聰惠,「氧化鐵覆膜濾砂吸附銅離子特性之探討」,第六屆海峽兩岸環境保護研討會,高雄,第475-480頁(1999)。
賴進興、陳世裕、施百鴻,「氧化鐵覆膜濾砂應用於水中銅、鉛離子去除之探討」,第二十三屆廢水處理技術研討會論文集,台中,第374-380頁(1998)。
歐陽嶠暉、許鎮龍、藍文忠,「都市污水處理廠污泥處理與資源化再利用之研究」,第八屆下水道技術研討會論文集,第19-33頁(1998)。
工業污染防制手冊,「工業廢水活性碳處理」,經濟部工業局工業污染防治技術團‧財團法人中技社編印(1993)。
王明光,「鋁的環境化學」,國立編譯館,台北,(1996)。