跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范亞博
Aprizal Verdyansyah
論文名稱: 整合CMIP6與遙測數據於機器學習在氣候變遷情境下預測Demak地區目前與未來的洪水易淹風險
Integrating CMIP6 and Remote Sensing Data for Current and Future Flood Susceptibility Projections Using Machine Learning Under Climate Change Scenarios in Demak District
指導教授: 林唐煌
Tang-Huang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 88
中文關鍵詞: 洪水遥感机器学习多模型集成
外文關鍵詞: CMIP6 GCMs, Shared Socioeconomic Pathways
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在眾多自然災害中,洪水因其頻繁發生及其對社會和環境的嚴重影響而尤為突出。本研究旨在通過整合遙感資料、機器學習技術和CMIP6全球氣候模型(GCM)資料,為印尼德馬克地區(Demak District)開發一個洪水潛勢易淹的模型。研究方法包含使用Sentinel-1 SAR資料作為洪水清單,繪製當前洪水易淹區的地圖,並應用MLP-NN、隨機森林、支援向量機(SVM)和XGBoost等機器學習演算法來預測洪水易淹地區。此外,基於CMIP6 GCM的降水資料,針對三種共用社會經濟路徑(SSP)情景(SSP1-2.6、SSP2-4.5和SSP5-8.5)下,預測了2021年至2100年期間未來洪水的易發性。為了提高未來預測的可靠性,研究採用了多模型集成(MME)方法,結合了多個GCM的輸出結果,其中 MME 的 GCM 選擇基於對稱不確定性 (SU) 和評級指標 (RM),以確保使用最可靠的模型來降低模型不確定性。結果顯示,XGBoost 模型的預測能力最佳,AUC 為 0.9291,其次是隨機森林、SVM 和 MLP-NN。分析的結果易呈現,洪水易發的敏感性對於排放情形有顯著增加,尤其是在較高排放情景(SSP5-8.5)下,極高敏感性區域將從當前時期的 16.67% 增長到 2081-2100 年的 27.43%。洪水敏感性的增加與預測的降水量增加相一致,尤其是在較高排放路徑下,如 MME 所預測之結果。整體的研究結果證實了整合 Sentinel-1 SAR 圖像用於生成洪水清單對於克服資料限制和提高模型準確性至關重要。本研究建構了一個預測洪水風險的預測模式,並適用於不同的排放情境,對於德馬克地區的洪水預防管理的策略具相當的參考價值。另一方面,研究結果亦強調,潛勢易淹的地區需要進行自我調整空間規劃,以應對氣候變化情景下日益增長的洪水風險,尤其是在高排放路徑下。研究結果同時顯示採用對稱不確定性和評級指標的多模型集成方法對於改進洪水敏感性預測和減少洪水風險評估中的不確定性的重要性。


    Among various natural hazards, floods stand out due to their frequency and severe impact on society and the environment. This study aimed to develop a flood susceptibility model for Demak District, Indonesia, by integrating remote sensing data, machine learning techniques, and CMIP6 Global Climate Models (GCMs) data. The approach involved mapping current flood susceptibility using Sentinel-1 SAR data as the flood inventory and applying machine learning algorithms such as MLP-NN, Random Forest, Support Vector Machine (SVM), and XGBoost to predict flood-prone areas. Additionally, future flood susceptibility was projected using CMIP6 GCM precipitation data under three Shared Socioeconomic Pathways (SSP) scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5), covering the 2021–2100 period. To enhance the reliability of future projections, a multi-model ensemble (MME) approach was employed, combining the outputs of multiple GCMs. The selection of GCMs for the MME was based on Symmetrical Uncertainty (SU) and Rating Metric (RM), ensuring that the most reliable models were used to reduce model uncertainties. The results showed that the XGBoost model demonstrated the best performance with an AUC of 0.9291, followed by Random Forest, SVM, and MLP-NN. The analysis revealed a significant increase in flood susceptibility, especially under higher emission scenarios (SSP5-8.5), with very high susceptibility areas growing from 16.67% in the current period to 27.43% by 2081–2100. This increase in flood susceptibility corresponds with projected increases in precipitation, particularly under higher emission pathways, as seen in the MME projections. The integration of Sentinel-1 SAR imagery for flood inventory generation proved essential in overcoming data limitations and enhancing the accuracy of the model. In conclusion, this study provides a robust framework for predicting flood risks, which is crucial for guiding flood management strategies in Demak District. The results underscore the need for adaptive spatial planning to address growing flood risks under climate change scenarios, especially in high emission pathways. The findings also highlight the importance of multi-model ensemble approaches, with Symmetrical Uncertainty and Rating Metric, to improve flood susceptibility projections and reduce uncertainties in flood risk assessments.

    Table of Contents 摘要.............................................................................................................................................i Abstract.......................................................................................................................................ii Acknowledgement.....................................................................................................................iii Table of Contents.......................................................................................................................iv List of Figures............................................................................................................................vi List of Tables ...........................................................................................................................viii CHAPTER I INTRODUCTION............................................................................................1 1.1. Background......................................................................................................................1 1.2. Research Problem and Objectives ...................................................................................4 1.3. Thesis Outline ..................................................................................................................6 CHAPTER II LITERATURE REVIEW................................................................................7 2.1. Flood ................................................................................................................................7 2.2. Active Remote Sensing....................................................................................................7 2.3. Flood Susceptibility Model..............................................................................................8 2.3.1. Flood Conditioning Factors.......................................................................................9 2.4. Coupled Model Intercomparison Project Phase 6 (CMIP6) ..........................................15 CHAPTER III DATA AND METHODOLOGY..................................................................18 3.1. Study Area......................................................................................................................18 3.2. Datasets..........................................................................................................................19 3.2.1. Flood Inventory Map...............................................................................................19 3.2.2. CMIP6 Global Climate Models (GCMs) ................................................................22 3.2.2. Gauge Station ..........................................................................................................24 3.3. Methodology..................................................................................................................24 3.3.1. Multicollinearity analysis........................................................................................26 3.3.2. Machine Learning Models ......................................................................................27 3.3.2.1. MLP-NN...........................................................................................................27 3.3.2.2. Random Forest..................................................................................................27 3.3.2.3. Support Vector Machine (SVM).......................................................................28 3.3.2.4. XGBoost...........................................................................................................28 3.3.3. Evaluation Metrics ..................................................................................................29 3.3.4. Symmetrical Uncertainty.........................................................................................29 3.3.5. Rating Metric...........................................................................................................31 3.3.6. Multi-Model Ensemble ...........................................................................................31 3.3.7. Multi-Model Ensemble Evaluation .........................................................................32 CHAPTER IV RESULTS ......................................................................................................34 4.1. Flood Conditioning Factor.............................................................................................34 4.2. Multicollinearity analysis...............................................................................................37 4.3. Features Importance.......................................................................................................38 4.4. Model Validation............................................................................................................40 4.5. Flood Susceptibility Map...............................................................................................43 4.6. Future Flood Projection .................................................................................................48 4.6.1. Symmetrical Uncertainty Calculation .....................................................................48 4.6.2. Rating Metric Score ................................................................................................49 4.6.3. Multi-Model Ensemble ...........................................................................................51 4.6.4. Future Flood in Different Scenarios........................................................................53 CHAPTER V DISCUSSION .................................................................................................60 CHAPTER VI CONCLUSION .............................................................................................63 REFERENCES .......................................................................................................................64

    REFERENCES
    [1] Shen G, Hwang SN. Spatial–Temporal snapshots of global natural disaster impacts
    Revealed from EM-DAT for 1900-2015. Geomatics, Natural Hazards and Risk
    2019;10:912–34. https://doi.org/10.1080/19475705.2018.1552630.
    [2] Bui DT, Tsangaratos P, Ngo PTT, Pham TD, Pham BT. Flash flood susceptibility
    modeling using an optimized fuzzy rule-based feature selection technique and tree based
    ensemble methods. Science of The Total Environment 2019;668:1038–54.
    https://doi.org/10.1016/J.SCITOTENV.2019.02.422.
    [3] Chowdhuri I, Pal SC, Chakrabortty R. Flood susceptibility mapping by ensemble
    evidential belief function and binomial logistic regression model on river basin of eastern
    India. Adv Space Res 2020;65:1466–89. https://doi.org/10.1016/J.ASR.2019.12.003.
    [4] Gholami F, Sedighifar Z, Ghaforpur P, Li Y, Zhang J. Spatial–temporal analysis of
    various land use classifications and their long-term alteration’s impact on hydrological
    components: using remote sensing, SAGA-GIS, and ARCSWAT model. Environ Sci
    (Camb) 2023;9:1161–81. https://doi.org/10.1039/D2EW00138A.
    [5] Gai L, Nunes JP, Baartman JEM, Zhang H, Wang F, de Roo A, et al. Assessing the impact
    of human interventions on floods and low flows in the Wei River Basin in China using
    the LISFLOOD model. Science of The Total Environment 2019;653:1077–94.
    https://doi.org/10.1016/J.SCITOTENV.2018.10.379.
    [6] Bannari A, Ghadeer A, Battay A El, Hameed NA, Rouai M. Detection of areas associated
    with flash floods and erosion caused by rainfall storm using topographic attributes,
    hydrologic indices, and GIS. Global Changes and Natural Disaster Management: GeoInformation Technologies 2017:155–74. https://doi.org/10.1007/978-3-319-51844-
    2_13.
    [7] Roy P, Chandra Pal S, Chakrabortty R, Chowdhuri I, Malik S, Das B. Threats of climate
    and land use change on future flood susceptibility. J Clean Prod 2020;272:122757.
    https://doi.org/10.1016/J.JCLEPRO.2020.122757.
    [8] Filonchyk M, Peterson MP, Zhang L, Hurynovich V, He Y. Greenhouse gases emissions
    and global climate change: Examining the influence of CO2, CH4, and N2O. Science of
    the Total Environment 2024;935. https://doi.org/10.1016/j.scitotenv.2024.173359.
    [9] Prăvălie R, Bandoc G, Patriche C, Sternberg T. Recent changes in global drylands:
    Evidences from two major aridity databases. Catena (Amst) 2019;178:209–31.
    https://doi.org/10.1016/J.CATENA.2019.03.016.
    [10] Janizadeh S, Chandra Pal S, Saha A, Chowdhuri I, Ahmadi K, Mirzaei S, et al. Mapping
    the spatial and temporal variability of flood hazard affected by climate and land-use
    changes in the future. Journal of Environment Management 2021;298.
    https://doi.org/10.1016/j.jenvman.2021.113551.
    [11] Kim JC, Lee S, Jung HS, Lee S. Landslide susceptibility mapping using random forest
    and boosted tree models in Pyeong-Chang, Korea. Geocarto Int 2018;33:1000–15.
    https://doi.org/10.1080/10106049.2017.1323964.
    [12] Rajkhowa S, Sarma J. Climate change and flood risk, global climate change. Global
    Climate Change 2021:321–39. https://doi.org/10.1016/B978-0-12-822928-6.00012-5.
    [13] Coronese M, Lamperti F, Keller K, Chiaromonte F, Roventini A. Evidence for sharp
    increase in the economic damages of extreme natural disasters. Proc Natl Acad Sci U S
    A 2019;116:21450–5. https://doi.org/10.1073/PNAS.1907826116.
    [14] Janizadeh S, Kim D, Jun C, Bateni SM, Pandey M, Mishra VN. Impact of climate change
    on future flood susceptibility projections under shared socioeconomic pathway scenarios
    in South Asia using artificial intelligence algorithms. J Environ Manage 2024;366.
    https://doi.org/10.1016/j.jenvman.2024.121764.
    [15] Mahdian M, Hosseinzadeh M, Siadatmousavi SM, Chalipa Z, Delavar M, Guo M, et al.
    Modelling impacts of climate change and anthropogenic activities on inflows and
    sediment loads of wetlands: case study of the Anzali wetland. Sci Rep 2023;13:1–18.
    https://doi.org/10.1038/S41598-023-32343-8.
    [16] Kurniadi A, Weller E, Kim YH, Min SK. Evaluation of Coupled Model Intercomparison
    Project Phase 6 model-simulated extreme precipitation over Indonesia. International
    Journal of Climatology 2023;43:174–96. https://doi.org/10.1002/joc.7744.
    [17] Ge F, Zhu S, Luo H, Zhi X, Wang H. Future changes in precipitation extremes over
    Southeast Asia: insights from CMIP6 multi-model ensemble. Environmental Research
    Letters 2021;16:024013. https://doi.org/10.1088/1748-9326/ABD7AD.
    [18] Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, et al. Overview of the
    Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and
    organization. Geosci Model Dev 2016;9:1937–58. https://doi.org/10.5194/GMD-9-
    1937-2016.
    [19] O’Neill BC, Tebaldi C, Van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, et al. The
    Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev
    2016;9:3461–82. https://doi.org/10.5194/GMD-9-3461-2016.
    [20] Sun J, Yan H, Bao Z, Wang G. Investigating Impacts of Climate Change on Runoff from
    the Qinhuai River by Using the SWAT Model and CMIP6 Scenarios. Water (Switzerland)
    2022;14. https://doi.org/10.3390/W14111778.
    [21] Aryal A, Acharya A, Kalra A. Assessing the Implication of Climate Change to Forecast
    Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling. Forecasting
    2022;4:1–22.
    [22] Mia MU, Chowdhury TN, Chakrabortty R, Pal SC, Al-Sadoon MK, Costache R, et al.
    Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative
    Classifier Optimizer. Land (Basel) 2023;12. https://doi.org/10.3390/land12040810.
    [23] Liu J, Wang J, Xiong J, Cheng W, Li Y, Cao Y, et al. Assessment of flood susceptibility
    mapping using support vector machine, logistic regression and their ensemble techniques
    in the Belt and Road region. Geocarto Int 2022;37:9817–46.
    https://doi.org/10.1080/10106049.2022.2025918.
    [24] Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ, et al. Flood
    Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a
    Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on KNearest Neighbor Classifier. Remote Sensing 2020, Vol 12, Page 266 2020;12:266.
    https://doi.org/10.3390/RS12020266.
    [25] de Brito MM, Almoradie A, Evers M. Spatially-explicit sensitivity and uncertainty
    analysis in a MCDA-based flood vulnerability model. International Journal of Geo Infor
    Science 2019;33:1788–806. https://doi.org/10.1080/13658816.2019.1599125.
    [26] Ranjgar B, Razavi-Termeh SV, Foroughnia F, Sadeghi-Niaraki A, Perissin D. Land
    Subsidence Susceptibility Mapping Using Persistent Scatterer SAR Interferometry
    Technique and Optimized Hybrid Machine Learning Algorithms. Remote Sensing 2021,
    Vol 13, Page 1326 2021;13:1326. https://doi.org/10.3390/RS13071326.
    [27] Mishra A, Mukherjee S, Merz B, Singh VP, Wright DB, Villarini G, et al. An Overview
    of Flood Concepts, Challenges, and Future Directions. J Hydrol Eng 2022;27:03122001.
    https://doi.org/10.1061/(ASCE)HE.1943-5584.0002164.
    [28] Dodangeh E, Singh VP, Pham BT, Yin J, Yang G, Mosavi A. Flood Frequency Analysis
    of Interconnected Rivers by Copulas. Water Resources Management 2020;34:3533–49.
    https://doi.org/10.1007/S11269-020-02634-0.
    [29] Samanta S, Pal DK, Palsamanta B. Flood susceptibility analysis through remote sensing,
    GIS and frequency ratio model. Applied Water Science 2018;8:1–14.
    https://doi.org/10.1007/S13201-018-0710-1.
    [30] Tehrany MS, Pradhan B, Jebur MN. Flood susceptibility mapping using a novel
    ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol
    (Amst) 2014;512:332–43. https://doi.org/10.1016/J.JHYDROL.2014.03.008.
    [31] Mehravar S, Razavi-Termeh SV, Moghimi A, Ranjgar B, Foroughnia F, Amani M. Flood
    susceptibility mapping using multi-temporal SAR imagery and novel integration of
    nature-inspired algorithms into support vector regression. J Hydrol (Amst) 2023;617.
    https://doi.org/10.1016/j.jhydrol.2023.129100.
    [32] Ngo PTT, Pham TD, Nhu VH, Le TT, Tran DA, Phan DC, et al. A novel hybrid quantumPSO and credal decision tree ensemble for tropical cyclone induced flash flood
    susceptibility mapping with geospatial data. J Hydrol (Amst) 2021;596.
    https://doi.org/10.1016/j.jhydrol.2020.125682.
    [33] Luino F. Floods. Encyclopedia of Earth Sciences Series 2020:1–6.
    https://doi.org/10.1007/978-3-319-12127-7_126-1.
    [34] Fischer S, Schumann AH. Temporal changes in the frequency of flood types and their
    impact on flood statistics. Journal of Hydrology X 2024;22:100171.
    https://doi.org/10.1016/J.HYDROA.2024.100171.
    [35] Fischer S, Schumann AH. Type-Based Flood Statistics 2023;124.
    https://doi.org/10.1007/978-3-031-32711-7.
    [36] Alonso-Sarria F, Valdivieso-Ros C, Molina-Pérez G. Detecting Flooded Areas Using
    Sentinel-1 SAR Imagery. Remote Sensing 2025, Vol 17, Page 1368 2025;17:1368.
    https://doi.org/10.3390/RS17081368.
    [37] Cui J, Zhang X, Wang W, Wang L. Integration of optical and SAR remote sensing images
    for crop-type mapping based on a novel object-oriented feature selection method.
    International Journal of Agricultural and Biological Engineering. 2020;13:178–90.
    https://doi.org/10.25165/j.ijabe.20201301.5285.
    [38] Singha M, Dong J, Sarmah S, You N, Zhou Y, Zhang G, et al. Identifying floods and
    flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google
    Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing 2020;166:278–
    93. https://doi.org/10.1016/J.ISPRSJPRS.2020.06.011.
    [39] Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, et al. GMES Sentinel1 mission. Remote Sens Environ 2012;120:9–24.
    https://doi.org/10.1016/J.RSE.2011.05.028.
    [40] Chen S, Huang W, Chen Y, Feng M. An Adaptive Thresholding Approach toward Rapid
    Flood Coverage Extraction from Sentinel-1 SAR Imagery. Remote Sensing 2021, Vol
    13, Page 4899 2021;13:4899. https://doi.org/10.3390/RS13234899.
    [41] Moharrami M, Javanbakht M, Attarchi S. Automatic flood detection using sentinel-1
    images on the google earth engine. Environ Monit Assess 2021;193.
    https://doi.org/10.1007/S10661-021-09037-7.
    [42] Jenkins K, Surminski S, Hall J, Crick F. Assessing surface water flood risk and
    management strategies under future climate change: Insights from an Agent-Based
    Model. Science of The Total Environment 2017;595:159–68.
    https://doi.org/10.1016/J.SCITOTENV.2017.03.242.
    [43] Shah SA, Ai S. Flood susceptibility mapping contributes to disaster risk reduction: A
    case study in Sindh, Pakistan. International Journal of Disaster Risk Reduction
    2024;108:104503. https://doi.org/10.1016/J.IJDRR.2024.104503.
    [44] Miranda F, Franco AB, Rezende O, da Costa BBF, Najjar M, Haddad AN, et al. A GISBased Index of Physical Susceptibility to Flooding as a Tool for Flood Risk
    Management. Land 2023;12:1408. https://doi.org/10.3390/LAND12071408.
    [45] Hitouri S, Mohajane M, Lahsaini M, Ali SA, Setargie TA, Tripathi G, et al. Flood
    Susceptibility Mapping Using SAR Data and Machine Learning Algorithms in a Small
    Watershed in Northwestern Morocco. Remote Sensing 2024;16:858.
    https://doi.org/10.3390/RS16050858.
    [46] Ahmad A, Chen J, Chen X, Khadka N, Khan MU, Wang C, et al. Flood risk modelling
    by the synergistic approach of machine learning and best-worst method in Indus
    Kohistan, Western Himalaya. Geomatics, Natural Hazards and Risk 2025;16.
    https://doi.org/10.1080/19475705.2025.2469766.
    [47] Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A. An artificial
    neural network model for flood simulation using GIS: Johor River Basin, Malaysia.
    Environ Earth Sci 2012;67:251–64. https://doi.org/10.1007/S12665-011-1504-Z.
    [48] Karpouza M, Bathrellos GD, Kaviris G, Antonarakou A, Skilodimou HD. How could
    students be safe during flood and tsunami events? International Journal of Disaster Risk
    Reduction 2023;95:103830. https://doi.org/10.1016/J.IJDRR.2023.103830.
    [49] Khosravi K, Pourghasemi HR, Chapi K, Bahri M. Flash flood susceptibility analysis and
    its mapping using different bivariate models in Iran: a comparison between Shannon’s
    entropy, statistical index, and weighting factor models. Environ Monit Assess
    2016;188:1–21. https://doi.org/10.1007/S10661-016-5665-9.
    [50] Pham BT, Luu C, Phong T Van, Nguyen HD, Le H Van, Tran TQ, et al. Flood risk
    assessment using hybrid artificial intelligence models integrated with multi-criteria
    decision analysis in Quang Nam Province, Vietnam. J Hydrol (Amst) 2021;592:125815.
    https://doi.org/10.1016/J.JHYDROL.2020.125815.
    [51] Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. An
    ensemble prediction of flood susceptibility using multivariate discriminant analysis,
    classification and regression trees, and support vector machines. Science of The Total
    Environment 2019;651:2087–96. https://doi.org/10.1016/J.SCITOTENV.2018.10.064.
    [52] Kazakis N, Kougias I, Patsialis T. Assessment of flood hazard areas at a regional scale
    using an index-based approach and Analytical Hierarchy Process: Application in
    Rhodope-Evros region, Greece. Science of the Total Environment 2015;538:555–63.
    https://doi.org/10.1016/j.scitotenv.2015.08.055.
    [53] Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan B, et al. A
    comparative assessment of flood susceptibility modeling using Multi-Criteria DecisionMaking Analysis and Machine Learning Methods. J Hydrol (Amst) 2019;573:311–23.
    https://doi.org/10.1016/J.JHYDROL.2019.03.073.
    [54] Chen Y, Liu R, Barrett D, Gao L, Zhou M, Renzullo L, et al. A spatial assessment
    framework for evaluating flood risk under extreme climates. Science of The Total
    Environment 2015;538:512–23. https://doi.org/10.1016/J.SCITOTENV.2015.08.094.
    [55] Rahmati O, Hamid Reza P, and Zeinivand H. Flood susceptibility mapping using
    frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto
    Int 2016;31:42–70. https://doi.org/10.1080/10106049.2015.1041559.
    [56] Shrestha S, Dahal D, Poudel B, Banjara M, Kalra A. Flood Susceptibility Analysis with
    Integrated Geographic Information System and Analytical Hierarchy Process: A MultiCriteria Framework for Risk Assessment and Mitigation 2025.
    https://doi.org/10.3390/w17070937.
    [57] Waleed M, Sajjad M. High-resolution flood susceptibility mapping and exposure
    assessment in Pakistan: An integrated artificial intelligence, machine learning and
    geospatial framework. International Journal of Disaster Risk Reduction
    2025;121:105442. https://doi.org/10.1016/J.IJDRR.2025.105442.
    [58] Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, et al.
    Application of frequency ratio, statistical index, and weights-of-evidence models and
    their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian
    Journal of Geosciences 2014;7:725–42. https://doi.org/10.1007/S12517-012-0807-Z.
    [59] Mohammadi A, Kamran KV, Karimzadeh S, Shahabi H, Al-Ansari N. Flood Detection
    and Susceptibility Mapping Using Sentinel‐1 Time Series, Alternating Decision Trees,
    and Bag‐ADTree Models. Complexity Wiley Online Library 2020;2020.
    https://doi.org/10.1155/2020/4271376.
    [60] Fiorentino C, Donvito AR, D’Antonio P, Lopinto S. Experimental methodology for
    prescription maps of variable rate nitrogenous fertilizers on cereal crops. International
    Mid-Term Conference of the Italian Association of Agricultural, 2019. Springer
    2020;67:863–72. https://doi.org/10.1007/978-3-030-39299-4_93.
    [61] Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery DR, Nittrouer CA, Guyot JL.
    Episodic sediment accumulation on Amazonian flood plains influenced by El
    Niño/Southern Oscillation. Nature 2003;425:493–7.
    https://doi.org/10.1038/NATURE02002.
    [62] Addis A. GIS – based flood susceptibility mapping using frequency ratio and
    information value models in upper Abay river basin, Ethiopia. Natural Hazards Research
    2023;3:247–56. https://doi.org/10.1016/J.NHRES.2023.02.003.
    [63] Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T. A GIS-based comparative study of
    frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression
    methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena (Amst)
    2011;85:274–87. https://doi.org/10.1016/j.catena.2011.01.014.
    [64] Khodaei H, Nasiri Saleh F, Nobakht Dalir A, Zarei E. Future flood susceptibility
    mapping under climate and land use change. Sci Rep 2025;15.
    https://doi.org/10.1038/S41598-025-97008-0.
    [65] Rahman ZU, Ullah W, Bai S, Ullah S, Jan MA, Khan M, et al. GIS-based flood
    susceptibility mapping using bivariate statistical model in Swat River Basin, Eastern
    Hindukush region, Pakistan. Front Environment Science 2023;11:1178540.
    https://doi.org/10.3389/FENVS.2023.1178540.
    [66] Adesuji KA, Srikantha H, Ram A. Methodology to Assess Potential Flood Damages in
    Urban Areas under the Influence of Climate Change. Nat Hazards Rev
    2018;19:05018001. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000278.
    [67] Karlsson CSJ, Kalantari Z, Mörtberg U, Olofsson B, Lyon SW. Natural Hazard
    Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis.
    Environ Manage 2017;60:823–51. https://doi.org/10.1007/S00267-017-0912-6.
    [68] Soltani K, Ebtehaj I, Amiri A, Azari A, Gharabaghi B, Bonakdari H. Mapping the spatial
    and temporal variability of flood susceptibility using remotely sensed normalized
    difference vegetation index and the forecasted changes in the future. Science of the Total
    Environment 2021;770. https://doi.org/10.1016/j.scitotenv.2021.145288.
    [69] Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu AX, et al. Flood susceptibility
    assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with
    genetic algorithm and differential evolution. Science of the Total Environment
    2018;621:1124–41. https://doi.org/10.1016/J.SCITOTENV.2017.10.114.
    [70] Yariyan P, Avand M, Abbaspour RA, Torabi Haghighi A, Costache R, Ghorbanzadeh O,
    et al. Flood susceptibility mapping using an improved analytic network process with
    statistical models. Geomatics, Natural Hazards and Risk 2020;11:2282–314.
    https://doi.org/10.1080/19475705.2020.1836036.
    [71] Edamo ML, Bushira K, Ukumo TY. Flood susceptibility mapping in the Bilate
    catchment, Ethiopia. H2Open 2022;5:691–712. https://doi.org/10.2166/H2OJ.2022.128.
    [72] Fang Z, Wang Y, Peng L, Hong H. Predicting flood susceptibility using LSTM neural
    networks. Journal of Hydrology (Amsterdam) 2021;594:125734.
    https://doi.org/10.1016/J.JHYDROL.2020.125734.
    [73] Papaioannou G, Vasiliades L, Loukas A. Multi-criteria analysis framework for potential
    flood prone areas mapping. Water Resources Management. Springer 2015;29:399–418.
    https://doi.org/10.1007/S11269-014-0817-6.
    [74] Ashfaq S, Tufail M, Niaz A, Muhammad S, Alzahrani H, Tariq A. Flood susceptibility
    assessment and mapping using GIS-based analytical hierarchy process and frequency
    ratio models. Global and Planetary Change 2025;251:104831.
    https://doi.org/10.1016/J.GLOPLACHA.2025.104831.
    [75] Vibhute AD, Dhumal R, Nagne A, Surase R, Varpe A, Gaikwad S, et al. Evaluation of
    soil conditions using spectral indices from hyperspectral datasets. Proceedings - 2017
    2nd International Conference on Man and Machine Interfacing, MAMI 2017 2018;2018-
    March:1–6. https://doi.org/10.1109/MAMI.2017.8308008.
    [76] Rogers A, Sensing MK-IJ of R. Reducing signature variability in unmixing coastal marsh
    Thematic Mapper scenes using spectral indices. International Journal of Remote Sensing
    2004;25:2317–35. https://doi.org/10.1080/01431160310001618103.
    [77] Chen F, Van de Voorde T, Roberts D, Zhao H, Chen J. Detection of Ground Materials
    Using Normalized Difference Indices with a Threshold: Risk and Ways to Improve.
    Remote Sensing 2021;13:450. https://doi.org/10.3390/RS13030450.
    [78] Nobre AD, Cuartas LA, Hodnett M, Rennó CD, Rodrigues G, Silveira A, et al. Height
    Above the Nearest Drainage – a hydrologically relevant new terrain model. J Hydrol
    (Amst) 2011;404:13–29. https://doi.org/10.1016/J.JHYDROL.2011.03.051.
    [79] Thalakkottukara NT, Thomas J, Watkins MK, Holland BC, Oommen T, Grover H.
    Suitability of the height above nearest drainage (HAND) model for flood inundation
    mapping in data-scarce regions: a comparative analysis with hydrodynamic models.
    Earth Sci Inform 2024;17:1907–21. https://doi.org/10.1007/S12145-023-01218-X.
    [80] Diehl RM, Gourevitch JD, Drago S, Wemple BC. Improving flood hazard datasets using
    a low-complexity, probabilistic floodplain mapping approach. PLoS One
    2021;16:e0248683. https://doi.org/10.1371/JOURNAL.PONE.0248683.
    [81] Aristizabal F, Salas F, Petrochenkov G, Grout T, Avant B, Bates B, et al. Extending
    Height Above Nearest Drainage to Model Multiple Fluvial Sources in Flood Inundation
    Mapping Applications for the U.S. National Water Model. Water Resour Res
    2023;59:e2022WR032039. https://doi.org/10.1029/2022WR032039.
    [82] Taylor K, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design.
    Bulletin of the American Meteorological Society, 2012. https://doi.org/10.1175/BAMSD-11-00094.1.
    [83] Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris Agreement
    climate proposals need a boost to keep warming well below 2 °c. Nature 2016;534:631–
    9. https://doi.org/10.1038/NATURE18307.
    [84] Fernandez-Palomino CA, Hattermann FF, Krysanova V, Vega-Jácome F, Menz C,
    Gleixner S, et al. High-resolution climate projection dataset based on CMIP6 for Peru
    and Ecuador: BASD-CMIP6-PE. Sci Data 2024;11. https://doi.org/10.1038/s41597-023-
    02863-z.
    [85] Janizadeh S, Kim D, Jun C, Bateni SM, Pandey M, Mishra VN. Impact of climate change
    on future flood susceptibility projections under shared socioeconomic pathway scenarios
    in South Asia using artificial intelligence algorithms. J Environ Manage
    2024;366:121764. https://doi.org/10.1016/J.JENVMAN.2024.121764.
    [86] Rifath AR, Muktadir MG, Hasan M, Islam MA. Flash flood prediction modeling in the
    hilly regions of Southeastern Bangladesh: A machine learning attempt on present and
    future climate scenarios. Environmental Challenges 2024;17:101029.
    https://doi.org/10.1016/J.ENVC.2024.101029.
    [87] Benzougagh B, Frison PL, Meshram SG, Boudad L, Dridri A, Sadkaoui D, et al. Flood
    Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study—Inaouene
    Watershed from Northeast of Morocco. Iranian Journal of Science and Technology -
    Transactions of Civil Engineering 2022;46:1481–90. https://doi.org/10.1007/S40996-
    021-00683-Y.
    [88] Moharrami M, Javanbakht M, Attarchi S. Automatic flood detection using sentinel-1
    images on the google earth engine. Environ Monit Assess 2021;193.
    https://doi.org/10.1007/S10661-021-09037-7.
    [89] Pelich R-M, Schumann G, Giustarini L, Tran KH, Menenti M, Jia L. Surface Water
    Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series
    and Otsu Threshold. Remote Sensing 2022, Vol 14, Page 5721 2022;14:5721.
    https://doi.org/10.3390/RS14225721.
    [90] Tiwari V, Kumar V, Matin MA, Thapa A, Ellenburg WL, Gupta N, et al. Flood inundation
    mapping-Kerala 2018; Harnessing the power of SAR, automatic threshold detection
    method and Google Earth Engine. PLoS One 2020;15.
    https://doi.org/10.1371/JOURNAL.PONE.0237324.
    [91] Tien Bui D, Pradhan B, Lofman O, Revhaug I. Landslide Susceptibility Assessment in
    Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models. Math
    Probl Eng 2012;2012:974638. https://doi.org/10.1155/2012/974638.
    [92] Al-Juaidi AEM. The interaction of topographic slope with various geo-environmental
    flood-causing factors on flood prediction and susceptibility mapping. Environmental
    Science and Pollution Research 2023;30:59327–48. https://doi.org/10.1007/S11356-
    023-26616-Y.
    [93] Rahman M, Ningsheng C, Islam MM, Dewan A, Iqbal J, Washakh RMA, et al. Flood
    Susceptibility Assessment in Bangladesh Using Machine Learning and Multi-criteria
    Decision Analysis. Earth Systems and Environment 2019;3:585–601.
    https://doi.org/10.1007/S41748-019-00123-Y.
    [94] Khodaei H, Nasiri Saleh F, Nobakht Dalir A, Zarei E. Future flood susceptibility
    mapping under climate and land use change. Sci Rep 2025;15:1–18.
    https://doi.org/10.1038/S41598-025-97008-0.
    [95] Darabi H, Rahmati O, Naghibi SA, Mohammadi F, Ahmadisharaf E, Kalantari Z, et al.
    Development of a novel hybrid multi-boosting neural network model for spatial
    prediction of urban flood. Geocarto Int 2022;37:5716–41.
    https://doi.org/10.1080/10106049.2021.1920629.
    [96] Isabona J, Imoize AL, Ojo S, Karunwi O, Kim Y, Lee CC, et al. Development of a
    Multilayer Perceptron Neural Network for Optimal Predictive Modeling in Urban
    Microcellular Radio Environments. Applied Sciences 2022, Vol 12, Page 5713
    2022;12:5713. https://doi.org/10.3390/APP12115713.
    [97] Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, et al. Modeling flood susceptibility
    using data-driven approaches of naïve Bayes tree, alternating decision tree, and random
    forest methods. Science of The Total Environment 2020;701:134979.
    https://doi.org/10.1016/J.SCITOTENV.2019.134979.
    [98] Tsagkrasoulis D, Montana G. Random forest regression for manifold-valued responses.
    Pattern Recognit Lett 2018;101:6–13. https://doi.org/10.1016/J.PATREC.2017.11.008.
    [99] Al-Aizari AR, Alzahrani H, Althuwaynee OF, Al-Masnay YA, Ullah K, Park H-J, et al.
    Uncertainty reduction in Flood susceptibility mapping using Random Forest and
    eXtreme Gradient Boosting algorithms in two Tropical Desert cities, Shibam and Marib.
    Remote Sensing 2024;16:336. https://doi.org/10.3390/rs16020336.
    [100] Al-Aizari AR, Alzahrani H, AlThuwaynee OF, Al-Masnay YA, Ullah K, Park HJ, et al.
    Uncertainty reduction in Flood susceptibility mapping using Random Forest and
    eXtreme Gradient Boosting algorithms in two Tropical Desert cities, Shibam and Marib.
    Remote Sensing 2024;16:336.. https://doi.org/10.3390/RS16020336/S1.
    [101] Breiman L, Last M. Random forests: finding quasars. Rice Statistical Challenges in
    Astronomy, 2003. Springer 2006:243–54. https://doi.org/10.1007/0-387-21529-8_16.
    [102] Liu J, Wang J, Xiong J, Cheng W, Li Y, Cao Y, et al. Assessment of flood susceptibility
    mapping using support vector machine, logistic regression and their ensemble techniques
    in the Belt and Road region. Geocarto Int 2022;37:9817–46.
    https://doi.org/10.1080/10106049.2022.2025918.
    [103] Ren F, Wu X, Zhang K, Niu R. Application of wavelet analysis and a particle swarmoptimized support vector machine to predict the displacement of the Shuping landslide
    in the Three Gorges. SpringerF Ren, X Wu, K Zhang, R NiuEnvironmental Earth
    Sciences, 2015•Springer 2015;73:4791–804. https://doi.org/10.1007/S12665-014-3764-
    X.
    [104] Parisouj P, Mohebzadeh H, Lee T. Employing machine learning algorithms for
    streamflow prediction: a case study of four river basins with different climatic zones in
    the United States. Water Resources Management Springer 2020;34:4113–4131..
    https://doi.org/10.1007/S11269-020-02659-5.
    [105] Akinci H, Ozalp AY. Investigating the effects of different data classification methods on
    landslide susceptibility mapping. Advances in Space Research 2024.
    https://doi.org/10.1016/J.ASR.2024.12.020.
    [106] Ma M, Zhao G, He B, Li Q, Dong H, Wang S, et al. XGBoost-based method for flash
    flood risk assessment. Journla of Hydrology (Amsterdam) 2021;598.
    https://doi.org/10.1016/J.JHYDROL.2021.126382.
    [107] Ren H, Pang B, Bai P, Zhao G, Liu S, Liu Y, et al. Flood Susceptibility Assessment with
    Random Sampling Strategy in Ensemble Learning (RF and XGBoost). Remote Sensing
    2024, Vol 16, Page 320 2024;16:320. https://doi.org/10.3390/RS16020320.
    [108] Mosavi A, Golshan M, Janizadeh S, Choubin B, Melesse AM, Dineva AA. Ensemble
    models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a
    priority assessment of sub-basins. Geocarto International 2022;37:2541–60.
    https://doi.org/10.1080/10106049.2020.1829101.
    [109] Dikshit A, Sarkar R, Pradhan B, Jena R, Drukpa D, Alamri AM. Temporal Probability
    Assessment and Its Use in Landslide Susceptibility Mapping for Eastern Bhutan. Water
    2020, Vol 12, Page 267 2020;12:267. https://doi.org/10.3390/W12010267.
    [110] Nashwan MS, Shahid S. Symmetrical uncertainty and random forest for the evaluation
    of gridded precipitation and temperature data. Atmos Res 2019;230:104632.
    https://doi.org/10.1016/J.ATMOSRES.2019.104632.
    [111] Singh B, Kushwaha N, Vyas OP, Singh B, Kushwaha N, Vyas OP. A Feature Subset
    Selection Technique for High Dimensional Data Using Symmetric Uncertainty. Journal
    of Data Analysis and Information Processing 2014;2:95–105.
    https://doi.org/10.4236/JDAIP.2014.24012.
    [112] Hassan I, Kalin RM, White CJ, Aladejana JA. Selection of CMIP5 GCM Ensemble for
    the Projection of Spatio-Temporal Changes in Precipitation and Temperature over the
    Niger Delta, Nigeria. Water 2020, Vol 12, Page 385 2020;12:385.
    https://doi.org/10.3390/W12020385.
    [113] Yu L, Liu H. Feature Selection for High-Dimensional Data: A Fast Correlation-Based
    Filter Solution. Proceedings, Twentieth International Conference on Machine Learning
    2003;2:856–63.
    [114] Chen W, Jiang Z, Li L. Probabilistic Projections of Climate Change over China under
    the SRES A1B Scenario Using 28 AOGCMs. J Clim 2011;24:4741–56.
    https://doi.org/10.1175/2011JCLI4102.1.
    [115] Dey A, Sahoo DP, Kumar R, Remesan R. A multimodel ensemble machine learning
    approach for CMIP6 climate model projections in an Indian River basin. International
    Journal of Climatology 2022;42:9215–36. https://doi.org/10.1002/JOC.7813.
    [116] Jose DM, Vincent AM, Dwarakish GS. Improving multiple model ensemble predictions
    of daily precipitation and temperature through machine learning techniques. Sci Rep
    2022;12:1–25. https://doi.org/10.1038/S41598-022-08786-W.
    [117] Salman SA, Shahid S, Ismail T, Ahmed K, Wang X-J. Selection of climate models for
    projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos
    Res 2018;213:509–22. https://doi.org/10.1016/j.atmosres.2018.07.008.
    [118] Panda KC, Singh RM, Thakural LN, Sahoo DP. Representative grid location-multivariate
    adaptive regression spline (RGL-MARS) algorithm for downscaling dry and wet season
    rainfall. Journal of Hydrology (Amsterdam) 2022;605:127381.
    https://doi.org/10.1016/j.jhydrol.2021.127381.
    [119] Bezerra FE, Oliveira Neto GC de, Cervi GM, Francesconi Mazetto R, Faria AM de, Vido
    M, et al. Impacts of Feature Selection on Predicting Machine Failures by Machine
    Learning Algorithms. Applied Sciences 2024, Vol 14, Page 3337 2024;14:3337.
    https://doi.org/10.3390/APP14083337.
    [120] Kazakis N, Kougias I, Patsialis T. Assessment of flood hazard areas at a regional scale
    using an index-based approach and Analytical Hierarchy Process: Application in
    Rhodope-Evros region, Greece. Science of the Total Environment 2015;538:555–63.
    https://doi.org/10.1016/J.SCITOTENV.2015.08.055.
    [121] Pradhan B, Lee S, Dikshit A, Kim H. Spatial flood susceptibility mapping using an
    explainable artificial intelligence (XAI) model. Geoscience Frontiers 2023;14.
    https://doi.org/10.1016/j.gsf.2023.101625.
    [122] Waleed M, Sajjad M. High-resolution flood susceptibility mapping and exposure
    assessment in Pakistan: An integrated artificial intelligence, machine learning and
    geospatial framework. International Journal of Disaster Risk Reduction 2025;121.
    https://doi.org/10.1016/j.ijdrr.2025.105442.
    [123] Zhu K, Wang Z, Lai C, Li S, Zeng Z, Chen X. Evaluating Factors Affecting Flood
    Susceptibility in the Yangtze River Delta Using Machine Learning Methods.
    International Journal of Disaster Risk Science 2024. https://doi.org/10.1007/s13753-
    024-00590-6.
    [124] Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, et al. Changes
    in Climate Extremes and their Impacts on the Natural Physical Environment. Managing
    the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation:
    Special Report of the Intergovernmental Panel on Climate Change
    2012;9781107025066:109–230. https://doi.org/10.1017/CBO9781139177245.006.
    [125] Huang J De, Hung CS, Wu CM, Miura H. Convective Variabilities Leading to Different
    Pathways of Convective Self-Aggregation in Two Cloud-Resolving Models. J Atmos Sci
    2023;80:2041–55. https://doi.org/10.1175/JAS-D-22-0250.1.
    [126] Wang X, Miao H, Liu Y, Bao Q. Dependence of cloud radiation on cloud overlap,
    horizontal inhomogeneity, and vertical alignment in stratiform and convective regions.
    Atmos Res 2021;249:105358. https://doi.org/10.1016/J.ATMOSRES.2020.105358.
    [127] Cologna V, Meiler S, Kropf CM, Lüthi S, Mede NG, Bresch DN, et al. Extreme weather
    event attribution predicts climate policy support across the world. Nature Climate
    Change 2025 15:7 2025;15:725–35. https://doi.org/10.1038/s41558-025-02372-4.
    [128] Bolan S, Padhye LP, Jasemizad T, Govarthanan M, Karmegam N, Wijesekara H, et al.
    Impacts of climate change on the fate of contaminants through extreme weather events.
    Science of The Total Environment 2024;909:168388.
    https://doi.org/10.1016/J.SCITOTENV.2023.168388.
    [129] Abatzoglou JT, Williams AP. Impact of anthropogenic climate change on wildfire across
    western US forests. Procedings of Natl Acad Sci U S A 2016;113:11770–5.
    https://doi.org/10.1073/PNAS.1607171113.
    [130] Koks EE, Le Bars D, Essenfelder AH, Nirandjan S, Sayers P. The impacts of coastal
    flooding and sea level rise on critical infrastructure: a novel storyline approach. Sustain
    Resilient Infrastruct 2023;8:237–61. https://doi.org/10.1080/23789689.2022.2142741.
    [131] Taherkhani M, Vitousek S, Barnard PL, Frazer N, Anderson TR, Fletcher CH. Sea-level
    rise exponentially increases coastal flood frequency. Sci Rep 2020;10:1–17.
    https://doi.org/10.1038/S41598-020-62188-4.
    [132] Tahir Z, Haseeb M, Mahmood SA, Batool S, Abdullah-Al-Wadud M, Ullah S, et al.
    Predicting land use and land cover changes for sustainable land management using CAMarkov modelling and GIS techniques. Scientific Reports 2025 15:1 2025;15:1–23.
    https://doi.org/10.1038/s41598-025-87796-w.
    [133] Lukas P, Melesse AM, Kenea TT. Prediction of Future Land Use/Land Cover Changes
    Using a Coupled CA-ANN Model in the Upper Omo–Gibe River Basin, Ethiopia.
    Remote Sensing 2023;15:1148. https://doi.org/10.3390/RS15041148.

    QR CODE
    :::