| 研究生: |
李世璋 Shih-Chang Lee |
|---|---|
| 論文名稱: |
高功率超音波振動輔助線切割放電加工SKD61材料之研究 A Study on High-Power Ultrasonic Vibration Assisted Wire Electrical Discharge Machining on SKD61 |
| 指導教授: | 崔海平 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 超音波輔助 、線切割放電加工 、SKD61 |
| 外文關鍵詞: | Ultrasonic Assisted, WEDM, SKD61 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文為使用高功率超音波輔助振動線切割放電之線電極,對工具鋼SKD61工件進行切槽加工研究,並探討線切割加工參數如開路電壓、超音波功率,脈衝放電時間、伺服電壓之差異,於加工品質特性包括有加工時間、材料移除率、加工槽寬度及表面粗糙度等,並利用光學顯微鏡,觀察有無超音波輔助加工對再鑄層生成之影響。
實驗結果顯示,當超音波輔助振動線電極時因振幅的關係所以兩極間之間隙也會有週期性的變化,當兩極間隙變小時突破絕緣的能量也較小,因此在相同的加工參數下加入超音波輔助後,適當的加工參數組合下,相較於無超音波輔助加工時,加工時間平均縮短了4.2 %,以及材料移除率平均增加了7.5 %。
於超音波輔助加工的情況下,脈衝放電時間與伺服電壓對加工時間及材料移除率有顯著之影響,對加工後之加工槽寬度與表面粗糙度值的影響不明顯。於再鑄層的生成觀察中,在有無超音波輔助加工的情況下,再鑄層厚度皆會隨著開路電壓增加而變薄,而具超音波輔助加工相較於無超音波輔助加工產生之再鑄層厚度更薄,且能夠得到最薄的再鑄層厚度為1.358 μm。
Abstract
The study focused on applying ultrasonic vibration assisted wire electrical discharge machining to cut grooves on SKD61. The processing parameters, such as open voltage, ultrasonic power level, pulse on time, servo voltage, were selected to perform the experiments. The influence of each parameter on machining time, material removal rate, kerf width and surface roughness were inspected. The optical microscope is used to observe the effect of ultrasonic assisted processing on the formation of the recast layer.
The experimental results showed that the gap between the wire electrodes and workpiece changed periodically when the wire electrodes vibrated due to ultrasonic amplitude. When the machining gap became smaller, the power to break through the insulation also became smaller. With a proper combination of processing parameters, the processing time was shortened by an average of 4.2 % and the material removal rate was increased by an average of 7.5 %, when compared with non-ultrasonic assisted processing.
In the case of ultrasonic assisted machining, the pulse on time and servo voltage had significant effect on the processing time and material removal rate, but not on the kerf width and surface roughness values. We also observed that increasing the open circuit voltage reduced the thickness of the recast layer whether it was ultrasonically assisted or not. The thickness of the recast layer produced from ultrasonic assisted processing was even thinner, with the thinnest thickness of the recast layer being 1.358 μm.
參考文獻
[1] 魏維良,CNC線切割放電加工,全華圖書,民國78年。
[2] 簡剛佑,「超音波振動輔助線切割放電及電解加工多晶矽材料之研究」,國立中央大學,碩士論文,民國99年。
[3] 蘇品書譯,線切割放電加工,復漢出版社,民國89年。
[4] 李漢洲、林洋鑫,「線切割放電加工控制技術」,機械工業雜誌,2011。
[5] Y. F. Luo, C. G. Chen, & Z. F. Tong, “Investigation of silicon wafering by wire EDM”, Journal of Materials Science, Vol.27, pp.5805-5810, 1992.
[6] Z. N. Guo, T. C. Lee, T. M. Yue, & W. S. Lau, “A Study of Ultrasonic-aided Wire Electrical Discharge Machining”, Journal of Materials Processing Technology, Vol.63, pp.823-828, 1997.
[7] Y. Uno, A. Okada, Y. Okamoto, & T Hirano, “High performance slicing method of monocrystalline silicon ingot by wire EDM”, Initiatives of Precision Engineering at the Beginning of a Millennium, pp.219-223, 2002.
[8] N. Tosun, C. Cogun, & G. Tosun, “A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method”, Journal of Materials Processing Technology , Vol.152.3, pp.316-322, 2004.
[9] D. Rakwal, S. Heamawatanachai, P. Tathireddy, F. olzbacher, & E. Bamberg, “Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining”, Microsystem Technologies, Vol.15, pp.789-797,2009.
[10] A. Okada, Y. Uno, M. Nakazawa, & T. Yamauchi, “Evaluations of spark distribution and wire vibration in wire EDM by high-speed observation“, CIRP Annals, Vol.59, pp.231-234, 2010.
[11] K.T. Hoang, & S.H. Yang, “A study on the effect of different vibration-assisted methods in micro-WEDM”, Journal of Materials Processing Technology, Vol 213, pp.1616-1622, 2013.
[12] P. Radhakrishnan, L. Vijayaraghavan, & N. Ramesh Babu, “Experimental Study on Material Removal Capability with Vibration-assisted WEDM”, Applied Mechanics and Materials, Vol.798, pp.362-366, 2015.
[13] S. Habib, & A. Okada, “Study on the movement of wire electrode during fine wire electrical discharge machining process”, Journal of Materials Processing Technology, Vol.227, pp.147-152, 2016.
[14] V. Vikram Reddy, B. Shiva Krishna, P. Vamshi Krishna, & M. Shashidhar, “Influence of process parameters on performance characteristics during EDM of aluminum alloy 6082”, International Journal of Engineering Research & Technology, Vol.5, pp.211-216, 2016.
[15] H. Bisaria, & P. Shandilya, “Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 super alloy, Materials and Manufacturing Processes, Vol.34, pp.83-92, 2019.
[16] X. Chu, X. Zeng, W. Zhuang, W. Zhou, X. Quan, & T. Fu, “Vibration assisted high-speed wire electric discharge machining for machining surface microgrooves”, Journal of Manufacturing Processes, Vol.44, pp.418-426, 2019.
[17] P. Nakwong, & A. Muttamara, “Effect of Frequency to Ultrasonic Vibration-Assisted Wire-EDM”, Key Engineering Materials, Vol.814, pp.127-131, 2019.
[18] A. W. J. Hsue, Z. S. Su, & Y. L. Lin, “Dual-axial Ultrasonic Assisted Wire-EDM Process with Vibration Exerted through the Upper Guide”, Procedia CIRP, Vol.95, pp. 319-324, 2020.
[19] R. Izamshah, M. Akmal, M.H. Ibrahim, M.S. Kasim, S. Ding, M. H. Nawi, & M. S. Noorazizi, “Development of Ultrasonic Pulsation Wire Electrical Discharge Turning Device for Micro/Nano Medical Part Manufacturing”, International Journal of Nanoelectronics and Materials, Vol.13, pp.363-378, 2020.
[20] S. Kumar, S. Grover, & R. S. Walia, “Evaluation of Cutting Rate for Ultrasonic Work Piece Vibration Assisted Wire-EDM under Varying Amplitude of Vibration”, Materials Science Forum, Vol.979, pp.149-156, 2020.
[21] M. Singh, & S. Singh, “Multiple response optimization of ultrasonic assisted electric discharge Machining of Nimonic 75: A Taguchi-Grey relational analysis approach”, Materials Today: Proceedings, Vol45, pp.4731-4736, 2021.
[22] 倉藤尚雄、鳳承三郎著,鄒大鈞譯,放電加工,復漢出版社,民國88年。
[23] 許世勳,「大面積放電加工技術之研究」,國立中央大學,碩士論文,民國101年。
[24] 葉金璋,「線放電切割與電解磨削應用於多晶矽晶碇之加工特性研究」,國立中央大學,博士論文,民國101年。
[25] 張渭川,圖解放電加工的結構與實用技術,全華圖書,民國91年。
[26] 唐文聰,精密機械加工原理,全華圖書,民國93年。
[27] A. R. Motorcu, E. Ekici, & A. Kus, “Investigation of the WEDM of Al/B 4 C/Gr reinforced hybrid composites using the Taguchi method and response surface methodology”, Science and Engineering of Composite Materials, Vol.23, pp.435-445, 2016.
[28] J. Jeykrishnan, B. V. Ramnath, C. Elanchezhian, & S. Akilesh, “Parametric analysis on Electro-chemical machining of SKD-12 tool steel”, Materials Today: Proceedings, Vol.4, pp.3760-3766, 2017.
[29] S. Di, X. Chu, D. Wei, Z. Wang, G. Chi, & Y. Liu, “Analysis of kerf width in micro-WEDM”, International Journal of Machine Tools and Manufacture, Vol.49, pp.788-792, 2009.