| 研究生: |
鄭謙澤 Chien-Tse Cheng |
|---|---|
| 論文名稱: |
有機/無機混成法製備親/疏水性硬質膜之研究 Preparation of Organic/Inorganic hybrid hard films and study on the characteristics of Hydrophilic/Hydrophobic properties. |
| 指導教授: |
陳暉
Hui-Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 溶膠-凝膠法 、矽氧烷化合物 、聚乙烯醇縮丁醛(PVB) 、薄膜特性改質 、有機/無機硬質膜 、親水/疏水薄膜 |
| 外文關鍵詞: | Sol-gel method, Silane compounds, Hydrophilic / Hydrophobic films, Organic / Inorganic hard films, Polyvinyl butyral resin (PVB), Modification of films |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究利用溶膠-凝膠法(Sol-Gel method),結合有機高分子聚乙烯醇縮丁醛(Polyvinyl butyral resin,PVB)的成膜性與無機矽氧烷化合物的熱穩定性與硬質性,製備出有機無機混成硬質薄膜,並在製備條件導入二氧化矽粉體(SiO2 powder)以及藉由六甲基二矽氮烷(Hexamethyldisilazane,HMDS)在薄膜表面反應來進行薄膜特性改質,而製備出更加親/疏水性薄膜。
有機/無機硬質膜之製備方法是將矽氧烷化合物與蒸餾水、酸觸媒混合先進行初步反應,並加入PVB的異丙醇(IPA)溶液,混合之後經旋轉塗佈而得。
實驗所製備之薄膜先進行穿透率與接觸角之非破壞性測量後,再施作破壞性之硬度測試,其後再觀察薄膜表面型態與探討材料之物性。
實驗結果發現所製備的有機無機硬質膜,穿透率可達95%以上,硬度最高可達6H。在越酸性環境下反應所製備之薄膜接觸角雖然下降,但是可提高薄膜硬度。
薄膜特性改質部份,藉由HMDS在薄膜表面反應來進行薄膜特性改質能有效提高薄膜材料之接觸角。另外在製備條件中導入200nm之二氧化矽粉體後可增加薄膜材料表面粗糙度。因此可以得到親水性膜之接觸角小於5°,而疏水性膜之接觸角則為139.3°。
Abstract
Preparation of organic / inorganic hard films by using PVB (polyvinyl butyral resin) solution and SiO2 precursor via sol-gel process has been developed. Besides, more hydrophilic / hydrophobic films can be obtained by adding the SiO2 powder into the hard films and further modification the films with hexamethyldisilazane (HMDS) or not..
The PVB solution were prepared by dissolving PVB in isopropyl alcohol (IPA). The SiO2 precusor was prepared by reaction of silane compound with acid aqueous solution in IPA. The hard films were obtained by mixing the PVB solution with SiO2 precursor and then spin coating it on the substrate.
Prepared hard films were characterized by non- destructive measurement (such as transmittance, contact angle) and destructive measurement (such as hardness, thickness).
The results find the transmittance of organic / inorganic hard films can be greater than 95% and the hardness of the films can be reached to 6H. The contact angle of films is decreased under more acid environment, but the hardness of the films is increased.
The contact angle of the prepared films can be increased by modification of it with HMDS. Furthermore, the rough surface of the films can be improved by adding SiO2 powder in it. The contact angle of the hydrophilic and hydrophobic films can be less than 5o and 139.3o, respectively.
1.楊承璋,“AZ91D鎂合金化成皮膜結構強度及成長機制之研究”,私立大葉大學車輛工程研究所碩士論文,(2005)。
2.經濟部技術處,產業技術白皮書, 第四篇,(2003)。
3.曾貴瑜,“溶膠-凝膠法製備奈米塗層簡介”,紡織速報,(2004)。
4.雍敦元,“疏水自潔塗料與奈米技術”, 工業材料,(2004)。
5.張義和、徐敬添,“奈米技術在塗料卅油墨卅接著劑產業的應用”, 化工資訊,(2002)。
6.楊靜萍,“塑膠表面抗磨層之研究”, 國立中央大學化學工程與材料工程研究所碩士論文,(2002)。
7.陳志強,“可撓曲的面板-塑膠基板顯示器”, 工業材料雜誌,188期8月號,(2002)。
8.鄭總輝、陳振鑾、陳致源、鄭欽峰,“疏水自潔塗層結構概論”,工業材料雜誌,218期2月號,(2005)。
9.T. E. Patten and K. Matyjaszewski, Adv. Mat., 10, No.12, 901,(1998).
10.詹佳樺,“溶膠-凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究”, 國立中央大學化學工程研究所碩士論文,(2001)。
11.A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, Thin Solid Films (2000), 376, 140.
12.N.J. Shirtcliffe, G. McHale, M. I. Newton, C.C. Perry , Langmuir (2003), 19, 5626.
13.A. Venkateswara Rao, M. M. Kulkarni, Materials Research Bulletin,(2002), 37, 1667.
14.K. Satoh, H. Nakazumi, J. Sol-Gel Science and Technology, (2003), 27, 327.
15.S. Pilotek, H.K. Schmidt, J. Sol-Gel Science and Technology, (2003), 26, 789.
16.K. Tadanaga, K. Kitamuro, A. Matsuda, T. Minami, J. Sol-Gel Science and Technology, (2003), 26, 705.
17.A. Venkateswara Rao, Manish M. Kulkarni, D.P. Amalnerkar, T. Seth, J., Non-Crystalline Solids, (2003), 330, 187.
18.Guglielmi - M Brusatin-G Facchin-G Gleria-M, Applied organometallic chemistry. 13 (1999) 339.
19.Takahashi, Yoshihiro; Maeda, Akinori; Kojima, Kenzo; Uchida, Kenji.J. Luminescence. 87 (2000) 767.
20.Opallo, Marcin; Kukulka, J. Electrochemistry Communications. 2 (2000) 394.
21.Mimura, Shinya; Naito, Hiroyoshi; Kanemitsu, Yoshihiko; Matsukawa, Kimihiro; Inoue, Hiroshi. J. Organometallic Chemistry. 611 (2000) 40.
22.Jang, S.H.; Han, M.G.; Im, S.S. Synthetic Metals. 110 (2000) 17.
23.Chang, T.C.; Wang, Y.T.; Hong, Y.S.; Chen, H.B.; Yang, J.C. Polymer Degradation and Stability. 69 (2000) 317.
24.Dallmann, Kai; Buffon, Regina. Catalysis Communications. 1 (2000) 9.
25.Whan Cho, Jae; Il Sul, Kyung. Polymer. 42 (2001) 727.
26.Sun, C.-C.; Mark, J. E. Polymer,(1989),30,104.
27.Mark, J. E. Chemtech., April 19 (1989) 230.
28.Wung, C. J.; Pang, Y.; Prasad, P. N.; Karasz, F. E. ,Polymer, 32 (1991)605.
29.L-Davies, B.; Samoc, M.; Woodruff, M. Chem. Mater., 8 (1996) 2586.
30.Motakef, S.; Suratwala, T.; Roncone, R. L.; Boulton, J. M.; Teowee, G.; Neilson, G. F.; Uhlmann, D. R. J. , Non-Cryst Solids, 178 (1994) 31.
31.Motakef, S.; Suratwala, T.; Roncone, R. L.; Boulton, J. M.; Teowee,G.; Uhlmann, D. R. J. ,Non-Cryst. Solids, 178 (1994) 37.
32.Yoshida, M.; Prasad, P. N. Appl. Opt. 35 (1996) 1500.
33.Xu, C.; Eldada, L.; Wu, C.; Norwood, R. A.; Shacklette, L.W.; Yardley,J. T.; Wei, Y. Chem. Mater. 8 (1996) 2701.
34.Dave, B. C.; Dunn, B.; Valentine, J. S.; Zink, J. I. Anal. Chem., 66 (1994) 1120.
35.Claude, C.; Garetz, B.; Okamoto, Y.; Tripathy, S. Mater. Lett., 14 (1992) 336.
36.Schmidt, H. K. Mater. Res. Soc. Symp. Proc. 32 (1984) 327.
37.陳溪山,“二氧化錫薄膜之製備、微結構及功能性之研究”,國立中山大學材料科學研究所博士論文,(2003.06)。
38.徐世昌,“蓮花的自潔功能與奈米科技的應用”, 科學發展,354期,(2002.06)。
39.Barthlott,W., Neinhuis, C. Planta. (1997), 202, 1.
40.J-Y Shiu, C-W Kuo, P. Chen, C-Y Mou, Chemistry of Materials (2004), 16, 561.
41.徐堅,“自清潔功能的高分子仿生表面研究取得新進展”, 中國科學院院刊,(2005)。
42.林鶴南、李龍正、劉克迅,“原子力顯微術及其在半導體研究上的應用”, 科儀新知, 17, 29,(1995)。
43.鍾佳芸,“溶膠-凝膠法製備分子拓印高分子”, 國立中央大學化學工程與材料工程研究所碩士論文,67, (2004)。
44.卓恩宗、蔡增光、潘扶民、楊家銘、趙桂蓉,“有機薄膜電晶體之氫氣處理研究”, 半導體科技 No.45,國家奈米元件實驗室《奈米通訊》第十一卷第二期,(2004)。
45.C. C. Cho, B. E. Gnade, D. M. Smith, US Patent 5 504 042, (1996).
46.S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, Jr., W. N. Gill, J. L. Plaws-ky, J. Vac. Sci. Technol. B (1999), 17, 205.
47.X. S. Zhao, G. Q. Lu, J. Phys. Chem. B (1998), 102, 1556.
48.V. Antochshuk, M. Jaroniec, Chem. Commun. (1999), 2373.