跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林家龍
Chia-Lung Lin
論文名稱: A comparative study of the magnetic activities of low-mass stars from G-type to M-type
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 75
中文關鍵詞: 閃焰低質量恆星系外行星適居性
外文關鍵詞: Flares, low-mass stars, Exoplanets, Habitability
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 系外行星的適居可否在天文學與天文生物學都是很熱門的主題。由於許多因素,在適居帶的超級地球的大氣以及表面環境會因為其母星的物理狀態而大受影響。例如,強大的恆星風雨磁暴會剝離行星的大氣而限制生物圈的維持與發展。Maehara et al. (2013)的開創性研究中表示克普勒望遠鏡的高精確度使它收集的資料非常適合尋找特級或超級閃焰的工作,他們在148個G型主序星找到365個超級閃焰事件。特級與超級閃焰通常比目前歷史紀錄的最強太陽閃焰(1859年,Carrington 事件)還要強幾十至幾百倍。Shibayama et al. (2013)發現更多有閃焰事件的太陽型恆星,他們在279 G型主序星中偵測到1547個超級閃焰事件。Wu et al. (2015)以及Chang et al. (2017)利用克普勒望遠鏡的資料,完成了G與M型主序星的閃焰研究。他們發現一顆星的閃焰發生頻率與強度與其自轉速度(年齡)有極大的關係。年輕與自轉週期小於10天的星通常會發生能量較強的閃焰,且閃焰發生頻率也會偏高,這也代表著有較活躍的磁場活動。在這次的工作中,我們在K2 long cadence 數據中尋找有閃焰事件的M,K型主序星,尤其是一直以來被忽略的K型星。我們在548個M型星上找到3589個閃焰以及343個K型星上找到1647個閃焰事件,我們將這些閃焰與Shibayama et al. (2013)所找到的G型星閃焰做比較研究。


    The habitability of exoplanets is a hot topic in both astronomy and astrobiology. Among many factors, the atmospheric and surface environments of the habitable super-Earths could be significantly influenced by the physical conditions of the central stars. For example, robust stellar winds and magnetic storms could lead to stripping away of the planetary atmospheres thus limiting the sustainability of any biospheres. The pioneering work of Maehara et al. (2012) demonstrated that the high-precision measurements of the Kepler space telescope are ideal for the investigations of superflares with energy far beyond the maximal level of solar flare events (i.e., the Carrington event in 1859); they have found 365 flares on 148 G dwarfs. Shibayama et al. (2013) explored more flaring solar-type stars; they have detected 1547 superflares on 279 G dwarfs. At NCU, Wu et al. (2015) and Chang et al. (2017) carried out the statistical studies of the "Kepler" flare activities of the G-type and M-type dwarf stars, respectively. They found that the flare occurrence frequencies and strengths regarding the flare energy have the strong dependencies on the rotation periods and hence the ages of the stars. Those younger and faster-rotating (with rotation periods < 10 days) tend to have stronger magnetic activities. In this work, we report on the results of a comprehensive study of the flare effects covering the temperature range from M dwarfs to the solar-type stars thus bridging the gap of the K-type stars. We have detected 3589 flares on 584 M dwarfs, 1647 flares on 343 K dwarfs by analyzing the K2 long cadence data. We compared the M, K dwarfs’ flares we found with G dwarfs’ flares from Shibayama et al. (2013).

    Contents 摘要...................................................................... i Abstract ............................................................... ii 謝 誌 ......................................................................iii Contents................................................................iv List of figures ........................................................ v List of tables .........................................................vii 1. Introduction .................................................... 1 1.1 M-, K-, and G-type main sequence stars.................................. 1 1.2 Solar and stellar flares.............................................................. 3 2. Observations....................................................12 2.1 Kepler spacecraft and the the K2 mission................................12 3. Method............................................................15 3.1 Kepler K2 data.........................................................................15 3.2 Targets selection.......................................................................18 3.3 Flare detections........................................................................18 3.4 Flare energies estimates ...........................................................19 3.5 Rotation periods.......................................................................20 4. Results.............................................................25 4.1 Flare durations.........................................................................25 4.2 Flare peak amplitudes..............................................................27 4.3 Flare energies ...........................................................................27 4.4 Flare occurrence percentage.....................................................28 4.5 Rotation periods.......................................................................30 5. Discussions ......................................................32 5.1 Discussion on the flare detections ............................................32 5.2 Discussion on the flares amplitudes and the energies...............33 5.3 Discussion on the flares and stellar parameters........................36 iv 5.4 Discussions on flares, rotation periods and stellar ages............39 5.5 Discussion on the flares and the durations...............................43 5.6 Discussion on the flares occurrence percentage........................45 5.7 Discussion on the flare frequency distributions........................46 6. Conclusion.......................................................56 References.............................................................58

    [1] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. powerlaw: a
    python package for analysis of heavy-tailed distributions. PloS one,
    9(1):e85777, 2014.
    [2] David J Armstrong, C E Pugh, Annemarie Broomhall, David A
    Brown, M N Lund, Hugh P Osborn, and D Pollacco. The host stars
    of kepler’s habitable exoplanets: superflares, rotation and activity.
    Monthly Notices of the Royal Astronomical Society, 455(3):3110–3125,
    2016.
    [3] Sydney A Barnes. On the rotational evolution of solar-and late-type
    stars, its magnetic origins, and the possibility of stellar gyrochronology.
    The Astrophysical Journal, 586(1):464, 2003.
    [4] Sydney A Barnes. Ages for illustrative field stars using gyrochronol-
    ogy: viability, limitations, and errors. The Astrophysical Journal,
    669(2):1167, 2007.
    [5] Sydney A Barnes. A simple nonlinear model for the rotation of main-
    sequence cool stars. i. introduction, implications for gyrochronology,
    and color-period diagrams. The Astrophysical Journal, 722(1):222,
    2010.
    [6] F. J. M Barning. The numerical analysis of the
    light-curve of 12 lacertae : (bulletin of the astro-
    nomical institute of the netherlands,
    17 (1963),p22

    28). JournaloftheAmericanV eterinaryMedicalAssociation,17(5) :
    22,1962.
    [7] Marina Battaglia and Arnold O Benz. Observational evidence for return
    currents in solar flare loops. Astronomy & Astrophysics, 487(1):337–344,
    2008.
    [8] Guido Boffetta, Vincenzo Carbone, Paolo Giuliani, Pierluigi Veltri, and
    Angelo Vulpiani. Power laws in solar flares: self-organized criticality or
    turbulence? Physical review letters, 83(22):4662, 1999.
    [9] William J. Borucki, David Koch, Gibor Basri, Natalie Batalha, Timothy
    Brown, Douglas Caldwell, John Caldwell, Jørgen Christensendalsgaard,
    William D. Cochran, and Edna Devore. Kepler planet-detection mission:
    Introduction and first results. Science, 327(5968):977–980, 2010.
    [10] H. Y. Chang, Y. H. Song, A. L. Luo, L. C. Huang, W. H. Ip, J. N. Fu,
    Y. Zhang, Y. H. Hou, Z. H Cao, and Y. F Wang. Lamost observations of
    flaring m dwarfs in the kepler field. Astrophysical Journal, 834(1), 2016.
    [11] Paul Charbonneau. Dynamo models of the solar cycle. Living Reviews in
    Solar Physics, 7(1):3, 2010.
    [12] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law
    distributions in empirical data. SIAM review, 51(4):661–703, 2009.
    [13] Ronald L Gilliland, Jon M Jenkins, William J Borucki, Stephen T Bryson,
    Douglas A Caldwell, Bruce D Clarke, Jessie L Dotson, Michael R Haas,
    Jennifer Hall, Todd Klaus, et al. Initial characteristics of kepler short
    cadence data. The Astrophysical Journal Letters, 713(2):L160, 2010.
    [14] Suzanne L. Hawley. Multiwavelength observations of flares on ad leonis.
    The Astrophysical Journal, 597(1):535, 2003.
    [15] Suzanne L Hawley and George H Fisher. X-ray-heated models of stellar
    flare atmospheres: Theory and comparison with observations: Erratum.
    Astrophysical Journal Supplement, 78(2):565–598, 1992.
    [16] Eric J Hilton, Suzanne L Hawley, Adam F Kowalski, and Jon Holtzman.
    The galactic m dwarf flare rate. arXiv preprint arXiv:1012.0577, 2010.
    [17] Daniel Huber, Stephen T Bryson, Michael R Haas, Thomas Barclay, Geert
    Barentsen, Steve B Howell, Sanjib Sharma, Dennis Stello, and Susan E
    Thompson. The k2 ecliptic plane input catalog (epic) and stellar classifi-
    cations of 138,600 targets in campaigns 1-8. Astrophysical Journal Supple-
    ment Series, 224(1):2, 2016.
    [18] James Jeans and James Hopwood Jeans. An introduction to the kinetic
    theory of gases. CUP Archive, 1940.
    [19] Andreas Klaus, Shan Yu, and Dietmar Plenz. Statistical analyses sup-
    port power law distributions found in neuronal avalanches. PloS one,
    6(5):e19779, 2011.
    [20] RA Kopp and GW Pneuman. Magnetic reconnection in the corona and
    the loop prominence phenomenon. Solar Physics, 50(1):85–98, 1976.
    [21] M. Kretzschmar. The sun as a star: observations of white-light flares.
    Astronomy Astrophysics, 530(2):p´ ags. 471–480, 2011.
    [22] N. R. Lomb. Least-squares frequency analysis of unequally spaced data.
    Astrophysics Space Science, 39(2):447–462, 1976.
    [23] Hiroyuki Maehara, Takuya Shibayama, Shota Notsu, Yuta Notsu, Takashi
    Nagao, Satoshi Kusaba, Satoshi Honda, Daisaku Nogami, and Kazunari
    Shibata. Superflares on solar-type stars. Nature, 485(7399):478, 2012.
    [24] Hiroyuki Maehara, Takuya Shibayama, Yuta Notsu, Shota Notsu, Satoshi
    Honda, Daisaku Nogami, and Kazunari Shibata. Statistical properties of
    superflares on solar-type stars based on 1-min cadence data. Proceedings
    of the International Astronomical Union, 11(S320):144–149, 2015.
    [25] Donald F Neidig and Edward W Cliver. The occurrence frequency of
    white-light flares. Solar physics, 88(1-2):275–280, 1983.
    [26] RW Noyes, LW Hartmann, StLt Baliunas, DK Duncan, and AH Vaughan.
    Rotation, convection, and magnetic activity in lower main-sequence stars.
    The Astrophysical Journal, 279:763–777, 1984.
    [27] Rachel A Osten, Adam Kowalski, Stephen A Drake, Hans Krimm, Kim
    Page, Kosmas Gazeas, Jamie Kennea, Samantha Oates, Mathew Page,
    Enrique de Miguel, et al. A very bright, very hot, and very long flaring
    event from the m dwarf binary system dg cvn. The Astrophysical Journal,
    832(2):174, 2016.
    [28] R Pallavicini, L Golub, R Rosner, GS Vaiana, T Ayres, and JL Linsky.
    Relations among stellar x-ray emission observed from einstein, stellar rota-
    tion and bolometric luminosity. The Astrophysical Journal, 248:279–290,
    1981.
    [29] E Priest and T Forbes. Magnetic reconnection (cambridge, 2000.
    [30] J. F. Rowe, J. M. Matthews, S. Seager, D. Sasselov, R. Kuschnig, D. B.
    Guenther, A. F. J. Moffat, S. M. Rucinski, G. A. H. Walker, and W. W.
    Weiss. Towards the Albedo of an Exoplanet: MOST Satellite Observations
    of Bright Transiting Exoplanetary Systems. In F. Pont, D. Sasselov, and
    M. J. Holman, editors, Transiting Planets, volume 253 of IAU Symposium,
    pages 121–127, February 2009.
    [31] J. D Scargle. Studies in astronomical time series analysis. ii. statistical
    aspect of spectral analysis of unevenly spaced data. Astrophysical Journal,
    263(2):835–853, 1982.
    [32] Bradley E Schaefer, Jeremy R King, and Constantine P Deliyannis. Super-
    flares on ordinary solar-type stars. The Astrophysical Journal, 529(2):1026,
    2000.
    [33] Victor See, Moira Jardine, Aline A Vidotto, Pascal Petit, Stephen C Mars-
    den, Sandra V Jeffers, and JD do Nascimento. The effects of stellar winds
    on the magnetospheres and potential habitability of exoplanets. Astronomy
    & Astrophysics, 570:A99, 2014.
    [34] K c Shibata, S Masuda, M Shimojo, H Hara, T Yokoyama, S Tsuneta,
    T Kosugi, and Yohsuke Ogawara. Hot-plasma ejections associated with
    compact-loop solar flares. The Astrophysical Journal Letters, 451(2):L83,
    1995.
    [35] Kazunari Shibata and Takaaki Yokoyama. A hertzsprung-russell-like dia-
    gram for solar/stellar flares and corona: emission measure versus temper-
    ature diagram. The Astrophysical Journal, 577(1):422, 2002.
    [36] Takuya Shibayama, Hiroyuki Maehara, Shota Notsu, Yuta Notsu, Takashi
    Nagao, Satoshi Honda, Takako T. Ishii, Daisaku Nogami, and Kazunari
    Shibata. Superflares on solar type stars observed with kepler i. statistical
    properties of superflares. Astrophysical Journal Supplement, 209(1):882–
    887, 2013.
    [37] A Skumanich. Time scales for ca ii emission decay, rotational braking, and
    lithium depletion. The Astrophysical Journal, 171:565, 1972.
    [38] Jeffrey C Smith, Martin C Stumpe, Jeffrey E Van Cleve, Jon M Jenk-
    ins, Thomas S Barclay, Michael N Fanelli, Forrest R Girouard, Jeffery J Kolodziejczak, Sean D McCauliff, Robert L Morris, et al. Kepler pre-
    search data conditioning ii-a bayesian approach to systematic error correction. Publications of the Astronomical Society of the Pacific, 124(919):1000, 2012.
    [39] Martin C Stumpe, Jeffrey C Smith, Jeffrey E Van Cleve, Joseph D Twicken,
    Thomas S Barclay, Michael N Fanelli, Forrest R Girouard, Jon M Jenk-
    ins, Jeffery J Kolodziejczak, Sean D McCauliff, et al. Kepler presearch
    data conditioning i—architecture and algorithms for error correction in ke-
    pler light curves. Publications of the Astronomical Society of the Pacific,
    124(919):985, 2012.
    [40] Yang Su, Astrid M Veronig, Gordon D Holman, Brian R Dennis, Tongjiang
    Wang, Manuela Temmer, and Weiqun Gan. Imaging coronal magnetic-field
    reconnection in a solar flare. Nature Physics, 9(8):489, 2013.
    [41] Jeffrey E Van Cleve and Douglas A Caldwell. Kepler instrument handbook.
    Kepler Science Document, KSCI-19033-002, Edited by Michael R. Haas
    and Steve B. Howell, 2016.
    [42] Ilias M Vardavas, Ilias Vardavas, and Frederic Taylor. Radiation and Cli-
    mate: Atmospheric energy budget from satellite remote sensing, volume
    138. Oxford University Press, 2011.
    [43] Chiju Wu, Winghuen Ip, and Liching Huang. A study of variability in the
    frequency distributions of the superflares of g-type stars observed by the kepler mission. The Astrophysical Journal, 798(2):92, 2014.
    [44] AH Zhou, JP Li, and XD Wang. A study of a new increasing submillimeter spectral component of an x28 solar flare. The Astrophysical Journal,727(1):42, 2010.

    QR CODE
    :::