跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李韻芝
Yun-Chih Lee
論文名稱: 經氣氛處理之鈦酸鋇單晶其光折變響應與波長之關係
The relation between photorefractive response and the wavelength in reduced Barium Titanate crystals
指導教授: 張正陽
Jenq-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 92
語文別: 中文
論文頁數: 62
中文關鍵詞: 光折變鈦酸鋇
外文關鍵詞: photorefractive, Reduction treatment
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鋇單晶的光折變應答速度取決於光導電率及黑暗導電率。光導電主要受制於雜質濃度及雜質的光激發截面。相較於長晶時摻雜質,以氣氛處理改變雜質濃度是一較簡單的製程。由過去數十年研究,我們了解到氣氛處理可以改變雜質的濃度、價電子數及材料的黑暗導電率。氣氛處理的理論模擬說明了雜質價電子數的改變,會改變雜質在光折變效應中所扮演的角色,如:由深能階較轉為淺能階。然而,相關的實驗卻相當罕見。因此,我們製作了一系列經氣氛處理的鈦酸鋇單晶,量測它們的吸收光譜、黑暗衰減、光導電率及光誘吸收差。由黑暗衰減實驗得知晶體的黑暗導電率先隨著氧分壓下降,在10-8 atm時黑暗導電率最小,其值為 ;經過此點之後,黑暗導電率隨著氧分壓下降而上昇,在10-14 atm 時有最大值,其值為 。由整個吸收譜線來看,晶體對光的吸收也是先隨氧分壓下降,而後增加;最透明的晶體是A025(10-11 atm),其吸收係數達最低。這個現象暗示著黑暗導電率並未與雜質濃度同步變化。在光導電方面,波長的變短而光導電率增加是所有的晶體共同的特性。此點暗示深能階的吸收峰位於藍光區段。藉由光誘吸收差實驗結果及曲線擬合,我們推測淺能階的光激發截面隨著波長變長而變小;同時,所有的晶體都有一樣的趨勢。綜觀所有實驗資料,發現深能階的位置應位於藍光區且靠近共價帶,而淺能階的位置似乎也在附近;困惑的是,氣氛處理並未明顯改變深、淺能階的位置。


    Abstract

    目次 論文提要 iv 1 導論 1 2光折變理論 3 2.1 引言 ………………………………………………………………… 3 2.2 單載子單能階模型…………………………………………………5 2.3 單載子雙能階模型………………………………………10 2.3.1 空間電場與入射光強度關係……………………………13 2.3.2 光導電與入射光強度的關係……………………………14 2.3.3 光柵吸收率………………………………………………16 2.3.4 黑暗衰減…………………………………………………16 2.4 單載子單能階模型與單載子雙能階模型比較…………………17 3 光誘衰減 18 3.1 簡介…………………………………………………………………18 3.2 實驗方法…………………………………………………………19 3.2.1 材料製作……………………………………………………19 3.2.2 吸收光譜……………………………………………………20 3.2.3 黑暗衰減…………………………………………………22 3.2.4 光誘衰減……………………………………………………25 3.3 討論…………………………………………………………………28 3.3.1 光導電率與黑暗導電率……………………………………28 3.3.2 激發光影響導電率與氣氛處理關係………………………31 3.4 結論…………………………………………………………………34 4 光誘吸收差 35 4.1簡介…………………………………………………………………35 4.2 光誘吸收差…………………………………………………………36 4.3 實驗結果……………………………………………………………38 4.4 討論………………………………………………………………43 4.5 結論…………………………………………………………………50 5 總結 51 參考文獻 52

    參考文獻
    [1] A.Ashkin, G. Boyd, J. M. Dziedzic, R.G. Smith, A. A. Kallman, J. J. Levinstenin, and K. Nassau, “Optically-induced refractive index inhomogeneties in and ,” Appl. Phys. Lett. 9, 72(1966).
    [2] N.V. Kukhtarev, V. B. Markov, S. G. Odoulov, M.S. Soskin, and V. Vinetskii, “Holo-graphic storage in electrcoptic crystals. I steady state,” Ferroelectrics 22, 949(1979).
    [3] J. Feinberg, D. Heiman, A. R. Tangrary, Jr. and R. Hellwarth, “Photorefractive
    effects and light- induced charge migrating in barium titanate” J. Appl. Phys., vol. 51, p. 1297, (1980).
    [4] M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3 at 422nm” J. Appl. Phys. vol. 57, p. 4901, (1985)
    [5] F. P. Strohkendl, J. M. C. Jonathan and R. W. Hellwarth, “Hole-electron
    competition in photorefractive grating” Opt. Lett., vol. 11, p. 312, (1986).
    [6] G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials” J.Appl. Phys., vol. 57, p. 3363, (1986).
    [7] P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive materials” J.Appl. Phys., vol. 5, p. 4082, (1991).
    [8] P. Tayebati, “Effect of shallow traps on electron-hole competition in semi-insulating photorefractive materials” J. Opt. Soc. Am. B, vol. 3, p. 415, (1992)
    [9] Ph. Delaye, L. A. Montmorillon, I. Biaggio, J. C. Launay, G. Rossen: Opt. Commun. 134(1997)580.
    [10] J. Y. Chang, Effects of cobalt-dopant, oxygen-reduction and crystallographic orientation on the photorefractive properties of barium titante. PhD thesis, Massachusetts Institute of technology, 1992
    [11] S.Ducharme and Feinberg: J. Opt. Soc. Am. B3, 283(1986)
    [12] P. G. Schunemann, T. M. Pollak, Y. Yang, Y.-Y. Teng and C. Wong: J. Opt. Soc. Am. B 5, 1702(1988).
    [13] B. A. Wechsler and M.B. Klein: JOSA B 5, 1711(1988).
    [14] J.I. Pankove: Optical Processes in Semiconductors, Dover Publications, New York, 1971.
    [15] Parviz Tayebati and Daniel Mahgerefteh: J. Opt. Soc. Am. B 8(5), 1053(1991).
    [16] J. Y. Chang, M. H. Garrett, P. Tayebati, H. P. Jenssen, and C. Warde: JOSA B 12, 248(1995).
    [17] D. Mahgerefteh and J. Feinberg: Phys. Rev. Lett. 64, 2195(1990).
    [18] Chi-Yi Huang, C. H. Lin and J. Y. Chang “Dynamic light-induced absorption in highly reduced barium titanate” Proc. Photorefractive effects, Materials, and Devices, Vol 87, p.99, 2003.
    [19] K. Buse and T. Bierwirth, ”Dynamics of light-induced absorption in and application for intensity stabilization, ” J. Opt. Soc. Am. B 12 629(1995).
    [20] L. Holtmann, M. Unland, E. Krätzig and G. Godefroy, “ Conductivity and Light-induced Absorption in ,” Appl. Phys. A 51 13 (1990)
    [21] P . Tayebati and D. Mahgerefteh, “Theory of the photorefractive effect for and with the shallow traps,” J. Opt. Soc. Am. B 8 1053(1990)
    [22] P. Gunter and J.-P. Huignard, in “Photorefractive Materials and Their Applications,” Berlin : Springer-Verlag, c1988-c1989

    QR CODE
    :::