跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄧德華
Der-Hwa Deng
論文名稱: 型Ⅰ設限下的韋伯分配參數估計
Estimation of Parameters in the Weibull Distribution under Type-Ⅰcensoring.
指導教授: 呂理裕
Lii-Yuh Leu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 90
語文別: 中文
論文頁數: 63
中文關鍵詞: 型Ⅰ檢測韋伯分配參數估計
外文關鍵詞: Bootstrap, Bootstrap-t, percentile, Type-Ⅰcensoring
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 韋伯分配的型Ⅱ設限資料模型在工業及生物統計中被廣泛的應用,由於型Ⅰ設限且資料為小樣本時的結果較少且以往的研究中是以迭代的方法在完整資料或型Ⅱ設限資料模型的假設下討論韋伯分配參數問題。因此本文針對型Ⅰ設限且資料為小樣本的假設下,對韋伯分配的參數及可靠度問題以Bootstrap概念利用三種方法—Percentile Bootstrap,Bootstrap-t及Bootstrap Student’s t方法建構參數的信賴區間,並以覆蓋機率、信賴區間平均長度及長度變異量做為評量標準,藉以選擇出最佳之區間估計法。
    研究中發現,母數的Bootstrap區間估計比無母數的Bootstrap區間估計結果來得好;在韋伯分配的Bootstrap估計中,利用Percentile Bootstrap法所得到的結果優於其他兩種方法。
    因為韋伯分配在參數上難以控制,經轉換成極值分配是尺度—位置參數模型後重新進行估計,三種方法皆得到令人滿意的結果。而在無母數的區間估計中,Percentile Bootstrap與Bootstrap-t法在尺度參數的區間估計表現不佳,整體而言Bootstrap Student’s t法在無母數的區間估計上表現不錯。


    第一章 緒論 1 1.1 研究動機與文獻回顧 1 1.2 本文結構 3 第二章 韋伯分佈之參數、百分點及可靠度的信賴區間估計方法 5 2.1 近似常態法 6 2.2 PERCENTILE BOOTSTRAP法 9 2.3 BOOTSTRAP-T法 10 2.4 BOOTSTRAP STUDENT’S T法 11 2.5 KAPLAN-MEIER法 12 第三章 估計方法之演算過程 15 3.1 近似常態信賴區間演算過程 15 3.2 PERCENTILE BOOTSTRAP信賴區間演算過程 16 3.3 BOOTSTRAP-T信賴區間演算過程 17 3.4 BOOTSTRAP STUDENT’S T信賴區間演算過程 18 第四章 偏差修正 20 4.1 BOOTSTRAP區間估計的偏差修正 20 4.2 BOOTSTRAP法估計偏差的演算法 22 4.3 偏差修正估計量 23 第五章 韋伯分佈參數區間估計模擬結果 24 5.1 近似常態區間估計 24 5.2 母數區間估計 25 5.3 無母數區間估計 28 第六章 韋伯分佈偏差修正後參數區間估計模擬結果 32 6.1 母數偏差修正區間估計 32 6.2 無母數偏差修正區間估計 35 第七章 極值分佈之參數、百分點及可靠度的信賴區間估計 39 7.1 極值分佈參數區間估計模擬結果 39 7.1.1 母數區間估計 41 7.1.2 無母數區間估計 44 7.2 極值分佈偏差修正後參數區間估計模擬結果 48 7.2.1 母數區間估計 48 7.2.2 無母數區間估計 51 第八章 結論 55 參考文獻 57

    Bain, L. J., Charles E. A. (1967). Estimation of Parameters in the Weibull Distribution. Technometrics 9, 621-627.
    Bain, L. J., Charles E. A., Darrel R. T. (1969). Inferences on the Parameters of the Weibull Distribution. Technometrics 11, 445-560.
    Bain, L. J., Charles E. A., Darrel R. T. (1970). Maximum Likelihood Estimation, Exact Confidence Intervals for Reliability, and Tolerance Limits in the Weibull Distribution. Technometrics 12, 363-371.
    Bain, L. J., Max Engelhardt. (1986). Approximate Distributional Result Based on the Maximum Likelihood Estimators for the Weibull Distribution. Jorunal of Quality Technology, 18, 174-181.
    Billmann, B. R., Charles E. A., Bain, L. J. (1972). Statistical Inference From Censored Weibull Samples. Technometrics 14, 831-840.
    Cohen, A. C. (1965). Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and on Censored Samples. Technometrics 7, 579-588.
    Davision, A. C., Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge University Press.
    Dubey, S. D. (1967). Some Percentile Estimators for Weibull Parameters. Technometrics 9, 119-129.
    Efron, B. (1979a). Bootstrap Methods:Another Look at the Jackknife. Annals of Statist. 7, 1-26.
    Efron, B. (1981). Censored Data and the Bootstrap. J. Amer. Statist. Assoc. 76, 312-319.
    Efron, B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM, Philadelphia.
    Efron, B. (1987). Better Bootstrap Confidence Intervals. J. Amer. Statist. Assoc. 82, 171-185.
    Efron, B., Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York.
    Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53, 457-481.
    Mann, N. R. (1968). Point and Interval Estimation Procedures for the Two-Parameters Weibull and Extreme-Value Distribution. Technometrics 10, 231-254.
    Max Engelhardt, Bain, L. J., (1973).Some Complete and Censored Sampling Results for the Weibull or Extreme-Value Distribution. Technometrics 15, 541-549.
    Meeker, W. Q., Jeng S. L. (2001). Parametric Simultaneous Confidence Bands for Cumulative Distributions From Censored Data. Technometrics 43, 450-461.
    Thoman, D. R., Bain, L. J., Antle, C. E. (1969). Inferences on the Parameters of the Weibull Distribution. Technometrics 11, 445-460.

    QR CODE
    :::