| 研究生: |
陳柏文 Po-Wen Chen |
|---|---|
| 論文名稱: |
以離心模型試驗探討高含水量黏性背填土 Centrifuge study on the stability ofmechanically stabilized earth wall with clayey backfill of high water content |
| 指導教授: |
李崇正
C. C. Li. 陳慧慈 H. T. Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 黏土加勁擋土牆 、離心模型試驗 、加勁間距 |
| 外文關鍵詞: | mechanically stabilized earth wall with clayey b, centrifuge model tests |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
目前加勁擋土牆的設計規範是以級配良好的顆粒性土壤作為回填材料,但施工現場常用現地的非顆粒性土壤或黏土回填。然而含水量對黏土的影響甚鉅,且過去曾有一些因含水量的提高而破壞的案例,因此針對含水量對以黏土做為背填土壤的加勁擋土牆之穩定性,有必要做進一步的研究。
本研究主要運用大地工程離心機進行實驗,以探討含水量對黏土加勁擋土牆穩定性的影響,及改變加勁間距對改善高含水量黏土加勁擋土牆穩定性的效果。
由研究結果可以得到下列結論。1.背填料若為黏土時,含水量的高低對加勁擋土牆的穩定性有極大的影響。2.減少加勁間距的確可以有效改善高含水量對於黏土加勁擋土牆穩定性的不良影響。3.以中大紅土為例,若使用的加勁間距為計算出來的0.35倍,則可以確保當含水量上升至43%時,加勁擋土牆依舊可以和按照規範設計的加勁擋土牆具有相同的變形量。4.加勁間距若小於規範設計出來的0.625倍,則加勁擋土牆的變形型態會由一般的前傾型,轉變成上凹肚凸型且可看出破壞的前兆,顯示使用較小的間距,會讓加勁擋土牆具有較好的韌性。
ABSTRACT
The design and construction guidelines of mechanically stabilized earth wall (MSEW) require that the backfill of MSEW must be well-graded grained soil; however, on the construction sites, the cohesive soil or clay is frequently used to cut down the cost. There have been reports about the failures of MSEW with clayey soil as backfill due to the rise of its water content after heavy rainfall. As a result, it is imperative that the countermeasure must be developed to ensure the stability of MSEW with clayey backfill of high water content.
A series of centrifuge model tests have been performed to study the influence of water content on the stability of MSEW with clayey backfill and the effectiveness of reducing the reinforcement spacing to maintain the stability of MSEW of high water content.
From this study, the conclusions drawn are: (1) The degree of water content influences the stability of MSEW with clayey backfill very much; (2) Decreasing the reinforcement spacing can indeed improve the stability of MSEW of high water content; (3) For MSEW with clayey backfill of 43 % water content, reducing the reinforcement spacing by 65% of the original design spacing can lead to the same deformation characteristics of MSEW designed for normal conditions; (4) When the reinforcement spacing is smaller than 0.625 times of original design spacing, the deformation pattern for MSEW changes from small surface settlement with tilting wall face to large surface settlement with bulging wall face, indicating that the wall becomes more ductile before failure.
參考文獻
[1]. Acutronic, Civil Engineering Centrifuge Model 665-1 Installation Manual
5941E, France (1992).
[2]. Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H,
France (1993).
[3]. Acutronic, Geotechnical Centrifuge Model 665-1 Technical Proposal 6022,
France (1993).
[4]. Arthur, E., “Geosynthetic/Soil Studies Using a Geotechnical Centrifuge,”
Geotextiles and Geomembranes, pp. 133-156(1987).
[5]. Bourdeau, Y., Gourc, J. P., Gotteland, Ph., and Perrier, H., “Pull-out
behaviour-Experimental study,” Geomembranes and Related Products, pp. 200
(1990).
[6]. Ching-Chuan Huang, “Report on Three Unsuccessful Reinforced Walls,”
Geosynthetic-Reinforced Soil Retaining Walls, pp. 219-222(1994).
[7]. Costalonga, M. A. R., “Geogrid pull-out test in clay,” Geomembranes and
Related Products, pp. 802(1990).
[8]. Goodings, D. J., and Santamarina, J. C., “Reinforced Earth and Adjacent
Soils,” Journal of Geotechnical Engineering, Vol. 115, No. 7, pp. 1021-
1025(1989).
[9]. Haji Ali, F., and Tee, H. E., “Reinforced slopes : Field behaviour and
prediction,” Geomembranes and Related Products, pp. 17-20 (1990).
[10]. Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and
Construction Guidelines, U.S., Department of Transportation Federal
Highway Administration(FHWA), NHI Course, No. 132042(2001).
[11]. Palmeira, E. M., and Milligan, G. W. E., “Large scale pull-out tests on
geotextiles and geogrids,” Geomembranes and Related Products, pp. 743-
746 (1990).
[12]. Porbaha, A., and Goodings, D. J., “Centrifuge modeling of geotextile -
reinforced cohesive soil retaining walls,”Journal of Geotechnical
Engineering, pp. 840~848 (1996).
[13]. Sawicki, A., “Theoretical analysis of centrifugal model tests on
reinforced earth structures,” Geotechnique, Vol. 48, No. 4, pp. 563-567
(1998).
[14]. Sawicki, A., “Plastic limit behavior of reinforced earth,” Journal of
Geotechnical Engineering, ASCE 109, Vol. 109, No. 7, pp. 1000-1005 (1983).
[15]. Shahar, Y., and Frydman, S., “Centrifuge modeling of narrow reinforced
retaining walls,” Physical Modeling in Geotechnics, pp. 1005-1010 (2002).
[16]. Suah, P. G., and Goodings, D. J., “PART 4 GEOSYNTHETICS IN
TRANSPORTATION FACILITIES - Failure of Geotextile-Reinforced Vertical
Soil Walls with Marginal Backfill,” Transportation Research Record, No.
1772, pp.183-189 (1989).
[17]. Tatsuoka, F., Uchimura, T., and Tateyama, M., “Preloaded and Prestressed
reinforced soil,” Soils and Foundations, Vol. 37, No. 3, pp. 79-94
(1997).
[18]. Thamm, B. R., Krieger, B., and Krieger, J., “Full-scale test on a
geotextile reinforced retaining structure,” Geomembranes and Related
Products, pp. 3-8 (1990).
[19]. Zornberg, J. G., Sitar, N., and Mitchell, J. K., “Performance of
Geosynthetic Reinforced Slopes at Failure,” Journal of Geotechnical and
Geoenvironmental Engineering, Vol. 124, No. 8, pp. 670-683(1998).
[20]. 廖慶隆,「電子量測系統之基本特性及在土木工程上之應用」,土木水利,第十二
卷,第三期,第85~100頁,(1985)。
[21]. 翁作新,「量測儀器之基本原理介紹」,地工技術雜誌,第十期,第5~10頁,
(1985)。
[22]. 周南山,「加勁擋土結構之分析設計及其在公路與高鐵之應用(一)」,現代營建,
第216期,第11-18頁(1997)。
[23]. 周南山,「加勁擋土結構之分析設計及其在公路與高鐵之應用(二)」,現代營建,
第217期,第23-30頁(1997)。
[24]. 周南山,「加勁擋土結構之分析設計及其在公路與高鐵之應用(三)」,現代營建,
第218期,第19-28頁(1997)。
[25]. 范嘉程、周南山,「加勁擋土結構設計及施工規範準則之探討」,地工技術,第70
期,第93-106頁(1998)。
[26]. 楊錫武、歐陽仲春,「加筋高路堤陡坡邊坡離心模型的研究」,土木工程學報,第33
卷,第5期,第88~91頁(2000)。
[27]. 張定,「鐵路軟土路堤臨界高度的離心模擬研究」,上海鐵道學院學報,第11卷,第
1期,第71~81頁(1990)。
[28]. 章為民、賴忠中、徐光明,「加筋擋土牆離心模型試驗研究」,土木工程學報,第33
卷,第3期,第84~91頁(2000)。
[29]. 賴世屏,劉家男,郭勝武,「地工合成材料加勁擋土牆施工實務」,地工技術,第85
期,第25-34頁,民國90年6月。
[30]. 方明朗,「北宜高速公路加勁擋土牆設計與施工」,地工技術,第85期,第35-42
頁,民國90年6月。
[31]. 李維峰、黃亦敏,「加勁擋土牆動態設計與研發」,地工技術,第85期,第13-24頁
(2001)。
[32]. 林三賢,「地工合成材料五種設計規範之比較」,地工技術,第71期,第43-46頁
(1999)。
[33]. 胡寶麟,「從AASFTO M 288-96規範談地工織物之設計與應用」,地工技術,第71
期,第5-12頁(1999)。
[34]. 陳榮河,「地工合成材於掩埋場之應用」,地工技術,第71期,第57-63頁
(1999)。
[35]. 孫漢豪,「崩坍地整治-加勁邊坡工程案例探討」,地工技術,第72期,第23-33頁
(1999)。
[36]. 單信瑜,「地工合成材料於山坡掩埋場之應用」,地工技術,第73期,第57-66頁
(1999)。
[37]. 陳景文、吳宗欣、Claybourn, A. F.,「不同地工織物擋土牆設計方法之比較」,地
工技術,第43期,第43-49頁(1993)。
[38]. 方明朗,「北宜高速公路加勁擋土牆設計與施工」,地工技術,第85期,第35-42頁
(2001)。
[39]. 賴世屏,「地工合成材料加勁擋土牆施工實務」,地工技術,第85期,第25-34頁
(2001)。
[40]. 陳昱宏,「位於斜坡上擋土牆之地震中破壞調查與變形分析」,碩士論文,國立成功
大學土木工程研究所(2001)。
[41]. 周禮輝,「集集地震中加勁擋土牆之破壞調查與變形分析」,碩士論文,國立成功大
學土木工程研究所(2001)。
[42]. 李咸亨、陳俊元、許澤華、廖郁玟,平溪棄土場加勁斜坡設計評估期末報告,國立暨
南國際大學土木工程學系建教合作研究計畫,計畫編號:土木建字八九○ ○二號
(2001)。
[43]. 張達德,新織造技術之地工織物在土木工程應用之評估期末報告,私立中原大學土木
工程學系建教合作研究計畫(2001)。