| 研究生: |
周柿均 Shih-Chun Chou |
|---|---|
| 論文名稱: |
渦旋初始化方法對熱帶氣旋模擬之影響 ─ 蘇迪勒颱風(2015)個案 |
| 指導教授: |
林沛練
Pay-Liam Lin 陳宇能 Yi-Leng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 颱風 、渦旋初始化 、雲微物理 |
| 外文關鍵詞: | typhoon, vortex initialization, cloud microphysics |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於熱帶氣旋在數值模式初始場中通常有結構偏大、強度較弱的問題,因此需要初始化方法修正初始場渦旋強度與結構。本研究採用Nguyen and Chen (2011)提出的動力驅動渦旋初始化方法(後續稱作NC),此方法假設環境場氣象變數與熱帶氣旋三維本體有高度相關,透過模式短時間週期反覆積分調整氣象變數分布情形,進而產生強度與觀測相當接近之渦旋結構。我的動機為測試在具有不同特性之熱帶氣旋個案中NC渦旋初始化方法是否能有一致的模式初始場改善能力,因此選取2015年暴風半徑相當廣闊之蘇迪勒颱風進行個案分析。
我們使用版本3.3.1WRF區域模式,結果顯示相較於沒有使用初始化方法(CTRL),NC確實能有效減少初始場中熱帶氣旋最低海平面氣壓與最大風速和觀測值之差異,且不論水平或是垂直結構亦有增強的情形。經過颱風24小時模擬結果顯示NC能夠模擬較佳的三維風場,且透過定點測站風速比較呈現NC具有改善觀測誤差的表現。另外,本研究也探討地形在渦旋初始化過程中對熱帶氣旋強度發展的影響,以及初始化方法在模式應用的限制與適用性。我們選取蘇迪勒颱風靠近台灣的時間,進行在初始時間將台灣與澎湖地形移除的測試(NCNT)。結果發現NCNT在初始化過程中才能真正增強颱風的強度,而NC因在模式積分過程中受地形影響甚至可能出現spin-down的問題,進而無法達到渦旋初始化的目的。因此我們認為當颱風靠近地形時,在執行初始化過程中須將可能影響颱風之地形因素移除,直到完成初始化後再於模擬過程中移回原始地形,數小時後透過模式動力過程能夠很快調節出颱風環流與地形之交互作用。最後,我們透過不同雲微物理參數化討論不同雲微物理過程對熱帶氣旋的影響,結果顯示暖雲方案模擬出較寬廣的風場特徵與回波範圍,此結果驗證Fovell et al. (2016)提出的熱帶氣旋雲物理過程,然而微物理參數測試結果以有考慮冰相過程之微物理參數化模擬之颱風結構較接近真實情況。
In our research, a vortex initialization scheme developed by Nguyen and Chen (2011, 2014), hereafter referred as NC scheme, to construct better tropical cyclone structure at the model initial conditions using WRF through a series of 1-h integrations is used. The basic assumptions are: 1) at the model initial time, the TC structure and intensity are related to environmental conditions; 2) the TC environment does not change drastically in the short period (~1 h).
We choose the case of typhoon Soudelor (2015) due to the large radius of the maximum wind speed for examining the performance of the NC scheme. This study has focused in three separate parts including impacts of the NC scheme on the open ocean, the initialization process using the NC scheme under the influence of terrains, and the impacts of microphysical process on TC initialization. The results show that the initial intensity, horizontal and vertical structure of TC Soudelor in the model are improved after using the NC scheme. Furthermore, when the TC is close to terrain, removing terrains is more effective than including the terrains during the initial spin-up process(NCNT), and the result is better than the initial state with terrain. Finally, different microphysics schemes are employed during the initialization. It is showed that the wind field close to surface with warm cloud process are stronger than the wind field with ice process included, resulting in stronger outflow and bringing more precipitation particles to the outer core increasing the radial extent of TC. The result could be corresponded to the distribution of the maximum reflectivity, and verified by the explanation proposed by Fovell et al. (2016).
李志昕, 洪景山, 2011: 區域系集預報系統研究:物理參數化擾動. 大氣科學, 39, 95-115.
羅雅尹, 2016: 民國104年颱風調查報告—第13號蘇迪勒(Soudelor)颱風(1513). 氣象學報地53卷第1期, 61-84.
Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in Tropical Cyclone Track and Intensity Forecasts Using the GFDL Initialization System. Monthly Weather Review, 121, 2046-2061.
Cao, Y., R. G. Fovell, and K. L. Corbosiero, 2011: Tropical cyclone track and structure sensitivity to initialization in idealized simulations: A preliminary study. Terr. Atmos. Ocean. Sci., 22, 559-579.
Chen, Y.-L., and J. Feng, 2001: Numerical Simulations of Airflow and Cloud Distributions over the Windward Side of the Island of Hawaii. Part I: The Effects of Trade Wind Inversion. Monthly Weather Review, 129, 1117-1134.
Chou, K.-H., and C.-C. Wu, 2008: Typhoon Initialization in a Mesoscale Model—Combination of the Bogused Vortex and the Dropwindsonde Data in DOTSTAR. Monthly Weather Review, 136, 865-879.
Davis, C. A., and S. Low-Nam, 2001: The NCAR-AFWA tropical cyclone bogussing scheme. US Air Force Weather Agency (AFWA) Rep, 4.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46, 3077-3107.
Feng, J., and Y.-L. Chen, 2001: Numerical Simulations of Airflow and Cloud Distributions over the Windward Side of the Island of Hawaii. Part II: Nocturnal Flow Regime. Monthly Weather Review, 129, 1135-1147.
Fovell, R. G., and Coauthors, 2016: Influence of Cloud Microphysics and Radiation on Tropical Cyclone Structure and Motion. Meteorological Monographs, 56, 11.11-11.27.
Fujita, T., 1952: Pressure distribution within typhoon. Geophys. Mag., 23, 437-451.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc, 42, 129-151.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134, 2318-2341.
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122, 927-945.
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. On the Distribution and Continuity of Water Substance in Atmospheric Circulations, Springer, 1-84.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An Initialization Scheme of Hurricane Models by Vortex Specification. Monthly Weather Review, 121, 2030-2045.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102, 16663-16682.
Nguyen, H. V., and Y.-L. Chen, 2011: High-Resolution Initialization and Simulations of Typhoon Morakot (2009). Monthly Weather Review, 139, 1463-1491.
——, 2014: Improvements to a Tropical Cyclone Initialization Scheme and Impacts on Forecasts. Monthly Weather Review, 142, 4340-4356.
Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NWS Technical Procedures Bulletin, 488, 15.
Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the Dynamics of Hawaiian Cloud Bands: Island Forcing. Journal of the Atmospheric Sciences, 45, 1872-1905.
Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of Asymmetric Latent Heating on Typhoon Movement Crossing Taiwan: The Case of Morakot (2009) with Extreme Rainfall. Journal of the Atmospheric Sciences, 69, 3172-3196.
Yeh, H.-C., and Y.-L. Chen, 2003: Numerical Simulations of the Barrier Jet over Northwestern Taiwan during the Mei-Yu Season. Monthly Weather Review, 131, 1396-1407.
Zou, X., and Q. Xiao, 2000: Studies on the Initialization and Simulation of a Mature Hurricane Using a Variational Bogus Data Assimilation Scheme. Journal of the Atmospheric Sciences, 57, 836-860.