跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李姿瑩
Tzu-ying Lee
論文名稱: 標準CMOS製程之850nm矽累崩光檢測器
Silicon Avalanche Photodetector Fabricated by Standard CMOS Technology in 850nm wavelength
指導教授: 辛裕明
Yue-Ming Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 100
中文關鍵詞: 光檢測器光二極體累崩
外文關鍵詞: photodetctor, photodiode, APD
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用0.18 ?m CMOS標準製程實現矽累崩光檢測器,此累崩光檢測器主要由N-implant、P-well構成累崩區,p-substrate形成吸光區。利用MEDICI二維元件模擬軟體及實際下線晶片的量測證明累崩光檢測器可同時兼具光響應度及頻寬;在逆向偏壓為11.27 V情況下,元件量測所得響應度約為3.75 A/W,3-dB頻寬可達3.0 GHz。同時引入Deep N-well層數,比較元件有無DNW之差異。接著透過金屬層區隔累崩區及吸光區,累崩區遮光之元件量測的響應度約1.17 A/W,3dB頻寬提升至4.8 GHz。此外,本論文針對矽累崩光檢測器之吸光區作進一步的分析,隨著累崩區面積的下降,放大因子隨著產生的光載子減少而下降。而隨著吸光區寬度的減少,所蒐集到的光載子中擴散電流成份減少也導致頻寬的增加。論文中也利用光脈衝量測,針對擴散載子對頻寬的影響進行驗證。最後我們利用量測所得之S參數萃取累崩光檢測器的模型參數,得到此光檢測器的等效電路模型後,並聯一單極點頻率響應電流源,模擬光電流,並進行頻率響應的電流源參數調整,分析影響本論文光檢測器速度的主宰因素。


    This work demonstrates a lateral avalanche photodetectors (APDs) by standard 0.18?m CMOS technology. In the proposed APD, we used n-implant/p-well to compose the avalanche region, and used metal layer to distinguish the absorption region and avalanche regions. At reverse bias of 11.27 V, the 3-dB bandwidth of APD is 3.0 GHz with the responsivity of 3.75 A/W. As in the proposed APD structure with Deep-N-Well layer, the 3-dB bandwidth is decreased to 1.0 GHz due to the extra depletion region at the p-well/DNW and p-substrate/DNW. The extra depletion regions could collect more photo-generated carriers but including diffusion carriers. The measured 3-dB bandwidth of proposed APDs will be improved when the reverse bias is within the avalanche region. At reverse bias of 11.3 V, the 3-dB bandwidth can be increased to 4.8 GHz. The possible reason may be attributed to the peaking effect in the frequency response. From the small signal analysis, we establish an equivalent circuit model including a parallel connected capacitance and an inductance due to the avalanche process. When the APD operates at high reverse bias voltages, the included LC equivalent circuit provides a resonance from the avalanche effect, which introduces a peaking phenomenon to further improve the frequency response. Finally, we discuss the differences between APDs with different absorption region widths. The highest M-Factor is about 148.84, and the best 3-dB bandwidth is 5.4 GHz at reverse bias of 11.73 V for the APD with 0.43 ?m absorption region width. As the avalanche region size decreases, the M-Factor decreases to 65.25 for the APD with 3.44 ?m absorption region width. And the 3-dB bandwidth is decreased to 0.7 GHz due to the diffusive photogenerated carriers as the absorption region width increases.

    摘要 ............................................................................................................................... I Abstract ........................................................................................................................ II 誌謝 ............................................................................................................................. III 目錄 ............................................................................................................................. IV 圖目錄 ......................................................................................................................... VI 表目錄 .......................................................................................................................... X 第一章 導論 ........................................................................................................... 1 1.1 動機 ........................................................................................................... 1 1.2 相關研究發展 ........................................................................................... 4 1.3 論文架構 ................................................................................................... 7 第二章 光檢測器簡介 ........................................................................................... 8 2.1 簡介 ........................................................................................................... 8 2.2 光檢測器工作原理 ................................................................................... 8 2.3 光檢測器響應時間分析 ......................................................................... 13 2.4 以標準CMOS製程實現光檢測器 ....................................................... 14 第三章 標準CMOS製程之累崩光檢測器 ....................................................... 19 3.1 簡介 ......................................................................................................... 19 3.2 光檢測器MEDICI二維元件模擬及設計 ............................................ 19 3.3 元件量測結果 ......................................................................................... 24 3.3.1 元件直流特性與響應度 ............................................................. 24 3.3.2 元件頻率響應與光脈衝響應 ..................................................... 31 3.4 光檢測器模型萃取 ................................................................................. 35 3.5 結論 ......................................................................................................... 43 第四章 累崩光檢測器之累崩區分析 ................................................................. 44 4.1 簡介 ......................................................................................................... 44 4.2 光檢測器MEDICI二維元件模擬及設計 ............................................ 44 4.3 元件量測結果 ......................................................................................... 49 4.3.1 元件直流特性與響應度 ............................................................. 49 4.3.2 元件頻率響應之測量 ................................................................. 54 4.4 光檢測器模型萃取 ................................................................................. 56 4.5 結論 ......................................................................................................... 61 第五章 累崩光檢測器之吸光區分析 ................................................................. 62 5.1 簡介 ......................................................................................................... 62 5.2 光檢測器MEDICI二維元件模擬及設計 ............................................ 62 5.3 元件量測結果 ......................................................................................... 68 5.3.1 元件直流特性與響應度 ............................................................. 68 5.3.2 元件頻率響應與光脈衝響應 ..................................................... 71 5.4 光檢測器模型萃取 ................................................................................. 74 5.5 結論 ......................................................................................................... 78 第六章 總結 ......................................................................................................... 79 參考文獻 ..................................................................................................................... 80

    [1] S. Radovanovic, High-Speed Photodiodes in Standard CMOS Technology, Print Partners Ipskamp, 2004.
    [2] IBM, debuts CMOS silicon photonics, by R. Colin Johnson
    [3] John Gowar, Optical Communication Systems, Prentice Hall, 1993
    [4] S. Radovanovic’, Anne-Johan Annema, and Bram Nauta, "A 3-Gb/s Optical Detector in Standard CMOS for 850-nm Optical Communication," IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp.1706-1717, Aug. 2005.
    [5] M. Jutzi, M. Grozing, E. Gaugler, W. Mazioschek, and M. Berroth, "2-Gb/s CMOS Optical Integrated Receiver With a Spatially Modulated Photodetector" IEEE Photonics Technology Letters, Vol. 17, No. 6,pp.1268-1270, Jun. 2005.
    [6] B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, "10-Gb/s All-Silicon Optical Receiver," IEEE Photonics Technology Letters, Vol. 15, No. 5, pp.745-747, May. 2003.
    [7] H. J. R. Dutton, Understanding Optical Communications, Sep. 1998, pp. 4-10
    [8] K. Iiyama, et al., "Hole-Injection-Type and Electron-Injection-Type Silicon Avalanche Photodiodes Fabricated by Standard 0.18 mm CMOS Process," IEEE Photonics Technology Letters, vol. 22, no. 12, pp. 932-934, Jun. 2010.
    [9] M. J. Lee and W. Y. Choi, "A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product," OPTICS EXPRESS, vol. 18, no.23, Nov. 2010.
    [10] Gerd Keiser, Optical Fiber Communications, McGRAW Hill, 2000, pp.536-555.
    [11] Kasap, S. O., Optoelectronics and photonics: principles and practices, Prentice Hall, 2001, pp.217-222.
    [12] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons Inc, 2007.
    [13] W. K. Huang, et al., "Bandwidth enhancement in Si photodiode by eliminating slow diffusion photocarriers," Electronics Letters, vol. 44, no. 1, pp. 52-53, Jan. 2008
    [14] S. Radovanovic, et al., "Physical and electrical bandwidths of integrated photodiodes in standard CMOS technology," IEEE Conference on Electron Devices and Solid-State Circuits, pp. 95-98, 2003.
    [15] G. P. Agrawal, Fiber-Optical Communication Systems, John Wiley & Sons Inc 2002.
    [16] S. Radovanovic’, Anne-Johan Annema, and Bram Nauta, "A 3-Gb/s Optical Detector in Standard CMOS for 850-nm Optical Communication," IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp.1706-1717, Aug. 2005.
    [17] C. Hermans and M. S. J. Steyaert, "A high-speed 850-nm optical receiver front-end in 0.18-?m CMOS," IEEE Journal of Solid-State Circuits, Vol. 41, No. 7 , pp. 1606-1614, Jul. 2006.
    [18] New Focus application notes No.1, “Insights into High-Speed Detectors and High-Frequency Techniques.”
    [19] B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, "10-Gb/s All-Silicon Optical Receiver," IEEE Photonics Technology Letters, Vol. 15, No. 5, pp.745-747, May. 2003.
    [20] S. G. Thomas, et al., "CMOS-compatible photodetector fabricated on thick SOI having deep implanted electrodes," Electronics Letters, vol. 38, no. 20, pp. 1202-1204, Sep. 2002.
    [21] R. Fujimoto, et al., "A 7-GHz 1.8-dB NF CMOS low-noise amplifier," IEEE Journal of Solid-State Circuits, vol. 37, no.7, pp. 852-856, Jul. 2002
    [22] M. J. Lee, H.S. Kang, W.Y, Choi, "Equivalent Circuit Model for Si Avalanche Photodetectors Fabricated in Standard CMOS Process", IEEE Electron Device Letters, Vol. 29, No. 10, Oct. 2008.
    [23] Hyo-Soon Kang, “CMOS-Compatible High-Speed Silicon Photodetectors for Gbps Fiber-Fed Wireline/Wireless Communication Systems,” The Graduate School Yonsei University, Department of Electrical and Electronic Engineering. 2009
    [24] Nikhil Ranjan Das, Senior Member, IEEE, and Paulami Rakshit, Student Member, IEEE, "On the Frequency Response and Optimum Designs for Maximum Bandwidth of a Lateral Silicon Photodetector", Journal of Lightwave Technology, Vol. 29, No. 19, Oct, 2011.

    QR CODE
    :::